Разбор схемы и ремонта микроволновки, Краснодар, Белецкий А. И. Электронная панель управления

Каждая поломка техники – не только неприятный момент, но и выход из строя всего распорядка дня, если эта техника использовалась постоянно в определенное время. Микроволновая печь – именно такое устройство, которое используется довольно часто. Это незаменимый прибор для подогрева или приготовления обеда обычного городского жителя. Поэтому малейшая поломка – это глобальная проблема для офиса или дома.

Далее разберемся, как можно своими руками осуществить ремонт микроволновой печи Самсунг, даже не имея для этого специальных навыков. Для наглядности будем использовать фото, а понятное видео позволит более детально запомнить, как сделать ремонт.

Конструкция

Это только на первый взгляд кажется, что микроволновка – сложный бытовой прибор. На самом деле, ее конструкция проста, поскольку состоит из таких основных элементов:

  • магнетрона;
  • камеры нагрева;
  • обмотки;
  • волновода.

Последний соединяет магнетрон с камерой.

Принцип действия

Микроволновки Samsung, как и многие устройства и иных брендов, имеют одинаковый принцип действия. Когда устройство включается в сеть, на первичную обмотку попадает напряжение. Энергию получает и вторичная обмотка. Эти элементы качественно изолированы.

Микроволновая печь применяет удвоение напряжения, что позволяет осуществлять нагрев с такой высокой скоростью. Для этого задействуется конденсатор. С ним соединен выпрямляющий диод, параллельно. Чтобы контролировать продолжительность нагрева, применяется таймер, а также температурный извещатель.

Немаловажную роль в устройстве играет система безопасности, ведь мы имеем дело с электроприбором. В нее входят реле защиты питания и фазы. Они ответственны за прекращение работы прибора, когда открывается дверь или скачет сетевое напряжение.


Характерные проблемы

Рассмотрим характерные поломки микроволновых печей Самсунг:

  • Искрение. Подобное явление может наблюдаться при повреждении колпачка магнетрона или при повреждении эмали на дверце. Дальнейшая эксплуатация устройства опасна, поэтому требуется немедленный ремонт.
  • Не греет. Если прибор Samsung не греет, причин может быть несколько. Возможно, сломался магнетрон. Также причиной могут быть скачки напряжения. Но все-таки чаще всего проблема кроется в перегоревшем предохранителе, который питает реле либо же первичную трансформаторную обмотку.
  • Увеличение времени нагрева. Это еще не проблема, однако ее предвестник, который указывает на необходимость, вероятно, скорой замены магнетрона.
  • Прибор не включается. Сначала проверяется кабель: либо он не подключен к сети, либо поврежден. Возможно, что неисправными являются дверные переключатели, в результате чего работа устройства блокируется системой безопасности. Также может выйти из строя температурный датчик.
  • Поддон не вращается. Скорее всего, проблема в двигателе.
  • Сильный гул. Причиной может быть работа вентилятора или трансформатора.
  • Если происходят сбои с управлением, проблема может быть с электронной платой.


Как разобрать печь

В большинстве случаев ремонт не обходится осмотром и внешним исправлением проблемы. Чаще всего приходится вскрывать устройство, чтобы добраться до его внутренних частей. Поэтому рассмотрим, как своими руками разобрать печь.

Сначала снимается кожух, фиксация которого осуществляется болтами. Как правило, их шесть штук. Они находятся в задней части устройства. Чтобы их выкрутить, можно использовать шуруповерт или отвертку.

Нужно отметить, что остальные элементы конструкции крепятся «скрытыми» замками, поэтому в основном болты не используются. После вскрытия кожуха микроволновки Samsung будет обеспечен доступ к ее внутренностям.

Для снятия всех последующих элементов необходимо лишь нажать в определенном месте на выступ. Электрические элементы нужно проверять на снятие всех креплений, поскольку они фиксируются и к корпусу, и клеммами.

Следует отметить еще один важный момент. Любые самостоятельные действия по ремонту прибора – это нарушение гарантийных обязательств, а значит, бесплатно осуществить ремонт в сервисном центре Самсунг уже не получится. Помните об этом, когда принимаете решение самостоятельно разбирать устройство.


Осуществление ремонта

Если сгорел магнетрон или устройство искрит, действовать нужно так:

  • Разбираем микроволновку. Смотрим на дверь и панель прибора. Вероятно, они будут иметь сколы эмали.
  • Если внутреннее покрытие повреждается, это ведет к нарушению магнитного поля, что может вызывать искрение.
  • Если причина не установлена, стоит снять магнетрон. Он фиксируется четырьмя винтами и клеммой.
  • Если с магнетроном все в порядке, стоит проверить волновод. Возможно, он имеет трещины или обуглен.

Если обнаружена поломка какого-либо элемента, его необходимо заменить, после чего собрать устройство.

Если микроволновка работает без остановки, действовать стоит так:

  • Проблема может крыться в реле напряжения, отвечающего за отключение питания. А причиной этого может быть залипание контактов.
  • Печь разбирается, необходимо вынуть реле. Его проверка осуществляется омметром. Устройство потребует замены, если будет обнаружен разрыв.
  • Иногда требуется чистка контактов, на которые мог попасть жир либо же влага.
  • Остается собрать и проверить прибор.

При сильном гудении следует действовать таким образом:

  • Вероятнее всего, что неполадка кроется в вентиляторе или трансформаторе. Первый случай более упрощен для ремонта, а во втором потребуется снимать волновод и магнетрон.
  • Неисправный элемент необходимо снять и заменить.
  • Вентилятор может гудеть от переработки, тогда необходимо прочистить систему охлаждения, а также отодвинуть прибор подальше от соседних предметов.

Если в микроволновке не вращается поддон, следует проверить контакт тарелки и двигателя. Прибор необходимо разобрать, снять поддон, проверить соединение. Его следует прочистить.

Выводы

Как видим, многие неполадки микроволновок Самсунг можно устранить своими силами. Достаточно проявить внимательность и соблюдать последовательность действий. Тогда приведенные рекомендации позволят осуществить ремонт в сжатые сроки, а значит, не придется недолго страдать от неработающей микроволновки.

Электронная панель управления микроволновой печи, по своей сути, является мини компьютером, чаще четырех разрядным и состоит из таких же узлов, что и обычный компьютер. В этой статье мы не будем рассматривать какой-то конкретный пример такой панели, а просто узнаем, какие узлы и детали может содержать этот тип. На рисунке 1, изображена структурная схема электронной панели управления, а на рисунке 2 можно посмотреть, как все это выглядит на самом деле.

Сердцем любого компьютера является микропроцессор. Именно этот компонент принимает команды, обрабатывает их, производит необходимые вычисления и затем выводит данные в удобном для человека виде. Есть такое сердце и у электронной панели, только называется оно – микроконтроллер. В отличии от микропроцессора, микроконтроллер менее функционален и предназначен для решения более узкого круга задач. Если процессор обычного компьютера может работать по любой программе, которую мы ему загрузим с внешнего носителя, то с микроконтроллером дела обстоят несколько иначе. Контроллер программируется только один раз, заводом изготовителем и работает, только по этой программе решая какую-то конкретную задачу. Благодаря универсальности микроконтроллеров, их применение в бытовой технике, позволило существенно снизить ее стоимость. Один и тот же тип контроллера может применяться в различных устройствах управления, меняется только программа. Такой подход избавил производителя от необходимости каждый раз разрабатывать индивидуальный чип для каждого нового вида техники.

Рисунок 1

Микроконтроллер представляет собой цифровую интегральную микросхему. На рисунке 1 изображена очень упрощенная структурная схема такого контроллера. Как и все процессоры, контроллер содержит в себе ЦПУ – центральное процессорное устройство. Это устройство предназначено для обработки данных поступающих от других устройств. ПЗУ – постоянное запоминающее устройство. Именно в эту область памяти контроллера «зашивается» та программа, по которой он в дальнейшем будет работать. В народе такую программу называют «прошивкой». ОЗУ – оперативное запоминающее устройство, или оперативная память. В этой области памяти хранятся временные данные команд, поступающих от устройства ввода и обработанные данные готовые поступить на устройства вывода. Порты ввода и вывода – устройства – посредники между устройствами микроконтроллера и внешними устройствами. Выводы портов могут работать в обоих направлениях, то есть, как принимать данные, так и отправлять их, все зависит от того, как ими распорядится программа, которую содержит ПЗУ.


Рисунок 2

Для перевода команд пользователя на «язык» понятный микроконтроллеру, существуют такие устройства, как устройства ввода. К таким устройствам, в первую очередь стоит отнести клавиатуру. Клавиатуру имеет любая электронная панель управления – это обязательный элемент. Нажимая на кнопки, мы подаем команды на порты ввода, затем эти команды обрабатываются ЦПУ. После обработки поступивших данных, ЦПУ выдает соответствующую информацию на порты вывода, таким образом, выполняя поступившую команду.

Еще одним устройством ввода является, МРУ – многофункциональная ручка управления. Это такая «крутилка», которая не имеет ограничений во вращении, ни в одну сторону, ни в другую. С помощью такой ручки можно настраивать различные параметры: устанавливать время работы печи, значения веса размораживаемых продуктов и так далее. Все зависит от того, в каком режиме ввода в данный момент находится панель управления. На самом деле, ручка МРУ, механически связана с формирователем импульсов. Пока мы вращаем ручку, формирователь вырабатывает импульсы, которые затем поступают на контроллер. Контроллер считает эти импульсы и согласно их количеству устанавливает нужные нам значения тех, или иных параметров работы печи. МРУ, не является обязательным элементом, и многие панели прекрасно обходятся без нее.

К устройствам ввода, так же можно отнести и внешние датчики. Эти устройства тоже подают команды или сигналы микроконтроллеру, согласно которым, он «принимает» то, или иное решение. Самым необходимым и обязательным внешним датчиком следует считать датчик открытия двери. Таким датчиком оснащена каждая микроволновая печь. Этот датчик представляет собой микропереключатель установленный в системе блокировки печи. Когда дверь закрыта, его контакты замкнуты, при открытии двери, контакты размыкаются. Именно по состоянию контактов этого переключателя контроллер «понимает», закрыта дверь печи, или нет. Стоит нам открыть дверь во время работы печи, и контроллер тут же обесточит все ее агрегаты — печь не начнет работать снова, пока мы не закроем дверь и повторно не нажмем на кнопку Старт.

Следующим внешним датчиком может быть датчик контроля температуры в рабочей камере. Наличие такого датчика определяется набором функций, которыми обладает конкретная микроволновая печь. В частности, датчик температуры необходим в печах с функцией конвекции. На панели управления задается нужное значение температуры, и контроллер, ориентируясь по сигналам датчика, в нужный момент включает или выключает тэн блока конвекции, таким образом, поддерживая заданный уровень температуры в камере печи. Подобные датчики могут иметь и печи с функцией проветривания камеры. В этом случае, после окончания работы печи, контроллер, опять же ориентируясь по сигналу датчика, не выключает вентилятор до тех пор, пока температура в камере не понизится до, предусмотренного программой значения.

Далее, переходим к устройствам вывода. Устройства вывода можно разделить на две группы. Это – диалоговые устройства и исполнительные. Диалоговые устройства обеспечивают своеобразный диалог, между печью и ее пользователем. С помощью этих устройств, микроконтроллер выводит информацию на понятном человеку языке. Наиболее значимым диалоговым устройством вывода визуальной информации является цифровой индикатор. Без него печью пользоваться практически не возможно. Ведь именно с помощью индикатора контроллер сообщает нам, в каком режиме и состоянии в данный момент находится наша печь. Применяемые в электронных панелях управления индикаторы могут быть трех типов: это – газоразрядные, жидкокристаллические и светодиодные. В последнее время, наибольшее распространение получили светодиодные индикаторы, как самые дешевые, надежные и долговечные. Выводы индикатора подключаются к портам вывода микроконтроллера, одной из функций которого, является обеспечение работы индикатора в динамическом режиме.

Вторым диалоговым устройством вывода можно считать звуковое устройство. С помощью этого устройства контроллер подает нам звуковые сигналы в определенные моменты работы печи, информирующие нас, например, о том, что время приготовления вышло, и печь закончила работу. В качестве источника звука, чаще применяется пьезокерамический капсюль. Выводы капсюля так же подключены к одному из портов вывода микроконтроллера. В нужный момент контроллер выдает на этот порт пачки импульсов звуковой частоты, которые потом и воспроизводит капсюль.

Одновременно с ведением диалога между пользователем и печью, микроконтроллер должен выполнять и свои «прямые» обязанности, то есть выполнять те команды, которые ему дали – включать, или выключать те, или иные агрегаты печи. Для этого предназначены исполнительные устройства вывода. Такие устройства представляют собой транзисторные ключи и электромагнитные реле. Выводы портов вывода контроллера слишком слаботочны и не могут управлять реле напрямую. Поэтому, сигнал с контроллера вначале подается на вход транзисторного ключа способного коммутировать ток и напряжение, достаточные для срабатывания реле. Для примера, давайте рассмотрим, как происходит включение печи в режим Микроволны. Вначале, нажимаем соответствующую кнопку на клавиатуре панели управления, задаем нужную мощность и время приготовления. При этом все, что мы делаем, отображается на индикаторе. В завершении, жмем на кнопку Старт. Микроконтроллер сканирует все порты ввода, в том числе и порты внешних датчиков. Если все нормально, дверь закрыта и остальные параметры в норме, на соответствующем выводе порта вывода контроллера, появляется уровень напряжения, необходимый для открытия транзисторного ключа. Ключ открывается и подает питание на обмотку электромагнитного реле. Реле срабатывает, и через его замкнутые контакты, напряжение сети поступает на первичную обмотку высоковольтного трансформатора. Трансформатор, в свою очередь формирует на вторичных обмотках необходимые напряжения для работы магнетрона и все – печь начала работу в режиме Микроволны. После истечения времени установленного на таймере, контроллер меняет уровень напряжения на выводе порта, ключ закрывается и обесточивает реле. Контакты реле размыкаются — рвут цепь питания высоковольтного трансформатора. Печь прекратила свою работу. Аналогично происходит включение и выключение других агрегатов печи – гриля или блока конвекции. Количество имеющихся исполнительных устройств, а равно и количество реле на плате электронной панели, зависит от функционала печи. Количество реле, на плате панели всегда будет на одно больше, чем количество агрегатов, которое содержит печь. Например, если печь поддерживает только режим Микроволны, то на панели управления будут установлены два реле, если микроволны и гриль, то три и так далее. Каждому агрегату соответствует свое реле, через которое он запитывается. Если печь обладает только одной функцией – Микроволны, то зачем два реле, а не одно? Что за лишнее реле? На самом деле оно не лишнее, а Главное, на схеме имеет обозначение «Main relay», то есть основное. Через контакты главного реле запитываются те агрегаты, которые функционируют в любом режиме работы печи, а именно: электродвигатель вентилятора, электродвигатель поворотного стола и лампа подсветки. Вот, например, печь находится в дежурном режиме – просто стоит и не работает. Открываем дверцу, и тут же загорается лампа подсветки камеры, это – результат срабатывания Главного реле.

Ну и последний, но не по важности, узел электронной панели управления, это – источник питания. На долю этого устройства, приходится, пожалуй, 90% всех неисправностей панели. Электронная панель управления имеет свой – отдельный источник питания конструктивно расположенный на одной печатной плате, вместе с остальными ее элементами. Чаще всего, это – простой трансформаторный блок питания, который преобразует переменное сетевое напряжение в два постоянных – 5В. для питания микроконтроллера и индикатора, и 12В. для питания исполнительных устройств – реле и транзисторных ключей. Исключение составляют те панели управления, в которых используется газоразрядный цифровой индикатор. В таких панелях трансформатор должен иметь третью вторичную обмотку, формирующую анодное напряжение для питания этого индикатора – 27 вольт. Последнее время, для снижения массы печи, производители стали применять импульсные источники питания. Импульсный источник питания имеет массу плюсов по сравнению с трансформаторным но, он более сложен по конструкции, а значит и более дорог в ремонте.



Разбор схемы и ремонта микроволновки. Краснодар Кубань.


Схема микроволновой печи.

На этом рисунке приведена полностью схема любой, от самой дешевой, до самой дорогой микроволновки. Все остальное - навороты фирмы. Это могут быть один или несколько таймеров, автоматические режимы готовки, разные звоночки, пикалки, пукалки, светомузыка, миллион светящихся цифр и букв и т д. Еще можно к этому огороду, добавить схему защиты от открывания двери во время работы, это еще штуки 3-5 концевых выключателей, переключателей, реле. Но все эти навороты делают одно - включают и выключают приведенную выше схему.))

И так, схема микроволновки.

Микроволновка состоит из высоковольтного трансформатора с высоковольтной низкотоковой обмоткой и накальной высокотоковой обмоткой с низким напряжением.

Напряжение на высоковольтной обмотке около 1600 Вольт.

Напряжение на накальной, около 3 Вольт.


Трансформатор включается в сеть через предохранитель на 10 Ампер.

Высоковольная обмотка имеет сопротивление около 180 Ом.

Высоковольтная обмотка подключается в цепь относительно корпуса. Это значит, что один ее вывод приклепан заклепкой к корпусу, а второй через клемму соединен с конденсатором выпрямителя.

Конденсатор в микроволновке выполняет одновременно несколько функций. Он является одновременно разделительным и сглаживающим элементом. Разделительным элементом предотвращена вероятность выхода из строя трансформатора при коротком замыкании в высоковольтной цепи, например, пробоя на корпус выпрямительного диода.

Фильтрующая функция понятна, он сглаживает пульсации после выпрямительного диода.

На современных схемах на конденсатор добавлено несколько абсолютно ненужных элементов, обведенных жирным овалом.

Это резистор, который предназначен для подстраховки разряда конденсатора, который в 1000 раз быстрее разряжается без него.

Это так гордо звучащий "защитный диод", который должен ограничить напряжение при превышении определенного уровня, который вылетает со свистом при малейшем превышении и микроволновка благополучно отправляется своим ходом в ремонт.


На второй конец конденсатора подключен на клемме высоковольтный, мощный выпрямительный диод, вторая нога диода лепестком прикручивается на корпус, добавляя еще один ненадежный контакт в схему.

На этом конце присутствует выпрямленное и сглаженное постоянное напряжнние 2100В под нагрузкой.

Это высокое напряжение 2100В, ЧЕРЕЗ ПРЕДОХРАНИТЕЛЬ, подается на катод магнитрона.


Анод магнитрона соединен с корпусом. К перечисленным элементам цепи, обязательно нужно добавить (и их учитывать при ремонте) клеммно - разъемные - проводные соединения, их здесь много.

Это мы разобрали состав высоковольтной цепи, или катодно - анодной цепи магнитрона.

Вторая, низковольтная цепь, это цепь накала магнитрона.

Цепь накала магнитрона состоит из накальной обмотки на трансформаторе, спирали накала в магнитроне и и соединительных клемм проводов и разъемов.

При эксплуатации, микроволновки часто отказывают из за пропадания контактов на клеммно - разъемно - проводных соединениях элементах схемы. Контакты пропадают КАК в НАКАЛЬНОЙ, ТКА И в ВЫСОКОВОЛЬТНОЙ ЦЕПЯХ. Как обжимные, так и паянные.


Часто бывает, что при проверке они не выявляются. Тестер показывает что контакт есть, а под нагрузкой, при работе, контакт пропадает. По этому при ремонте таких неисправностей необходимо не только пережимать все обжатые соединения, а и пропаивать контакты. Особенно опасны окисления, позеленения и белые сульфатации на контактных поверхностях соединений. Их нужно зачищать до блеска, промывать спиртом и желательно пропаивать.

Ну и на последок, при поиске плохих контактов, обращать внимание на качество контакта к корпусу трансформатора и всех элементов схемы и на качество контакта задействованных элементов корпуса (корпусных деталей) между собой.

Ненадежные контактные соединения на рисунках обведены синей линией.

Некоторые данные об элементах схемы микроволновой печи.

В микроволновках для выпрямления катодно - анодного тока применяются высоковольтные, на 12000 Вольт диоды, выдерживающие (не длительно) ток до 0,5 Ампер. Применять в любом случае нужно импортные, они меньше габаритами и вполне надежные. Диоды можно применять следующих маркировок.

Конденсатор высоковольтного выпрямителя так же лучше применять импортный, можно и китайских фирм, 1 микро Фарада, 2100 Вольт. Он должен быть специализированный для микроволновок, чтобы подходил по габаритам и выдерживал токовый режим магнитрона.

Конденсатор не имеет запаса по напряжению, поэтому высоковольтный выпрямитель без магнитрона или с негодным магнитроном желательно не включать на длительное время. Без нагрузки на конденсаторе напряжение подымается до 2600 Вольт! А сам конденсатор рассчитан на 2100В.

Повышающая обмотка анодного трансформатора имеет сопротивление порядка 180 Ом. Сопротивление высоковольтной обмотки нужно мерить относительно корпуса и клеммой на конденсаторе фильтра. Если сопротивление отличается от указанного, то повторить измерение, уже на выодах обмотки, зачистив места измерений.

Бывают случаи плохого контакта провода обмотки с лепестком, приклепанной клеммы с железом, трансформатора с корпусом микроволновки и провода обмотки с клеммой! Поэтому при измерении сопротивления этой обмотки измерение нужно проводить на выводных проводах, избегая всех контактных соединений.

При подаче высокого напряжения на катод, магнитрон несколько секунд не работает, по мере разогрева накала магнитрон плавно в течении 1-2 секунд запускается на всю мощность. Это хорошо слышно как по звуку, так и видно по просадке напряжения 220 Вольт, если рядом включить лампочку. Если звук не меняется, и нет просадки напряжения, то магнитрон не работает. Сразу нужно проверить напряжения и каждое контактное соединение элементов цепи, включая и паенные места, их лучше по новой пропаять. Бывают случаи, когда пайка как новая, а контакта нет!

Высокое напряжение (как переменное, так и постоянное), можно измерять любым тестером, используя делитель 1/11. Делитель делается из двух последовательно соединенных двухваттных резисторов на 1Мом и 100 кОм. На схеме нарисовано жирной линией. При измерении, показания нужно умножать на 11. Почему выбраны двухватные резисторы. Этим мы обеспечиваем нагрузку в измерительной цепи. При 2000 Вольтах, делитель даст нагрузку 4 Ватта.

Силовые цепи желательно измерять с нагрузкой, для устранение ЭДС и выявления плохих контактных соединений и конденсаторов.

С указанным делителем нужно измерение проводить кратковременно, при длительном подключении сильно греются резисторы, поскольку рассеиваемая на них мощность около 4 Ватт, а резисторы делителя рассчитаны на 2 Ватта.

Измерения в высоковольтной цепи проводить относительно корпуса, чтобы выявить плохие контакты.

Р ассмотрим устройство микроволновой печи (рис1) . (1-электронный модуль управления. 2- микровыключатели. 3- магнетрон. 4- термореле. 5- высоковольтный трансформатор. 6- предохранитель. 7- вентилятор. 8- сетевой фильтр. 9- накопительный конденсатор. 10- высоковольтный диод).

Механизм разогрева (приготовления) продуктов в микроволновой печи происходит за счет электромагнитного возбуждения молекул воды, содержащихся в продуктах.

Электромагнитные волны проникают на большую глубину и поглощаются молекулами воды.

Происходит процесс их возбуждение. Колебания молекул воды усиливаются. Молекулы сталкиваются друг с другом, что и приводит к повышению температуры (разогреву).

Что же необходимо знать, что бы произвести ремонт микроволновки своими руками .

Основное: это, как устроена микроволновая печь, как работает микроволновая печь.

Ремонт микроволновок своими руками. Основная масса микроволновок (практически все), не зависимо от марки и модели имеют одинаковый принцип работы, следовательно и устройство и функциональные узлы схожи и даже взаимозаменяемы.






1. ЭЛЕКТРОННЫЙ МОДУЛЬ УПРАВЛЕНИЯ:

Электромеханические блоки управления — это в основном механика. Вращаем ручку таймера, замыкаются контакты, включается двигатель.

Двигатель вращает таймер назад, и контакты размыкаются, слышим «звонок», и таймер останавливается. Мощность складывается из включений — выключений магнетрона.

Поэтому регулятор мощности задает периоды включения — выключения магнетрона.

Практически все модели микроволновых печей последних модификаций, комплектуются электронным модулем управления. Основные функции электронных модулей — это:

1. Задать мощность разогрева.

2.Задать время разогрева.

3. Включить гриль (в печах с грилем).

4. Включить микроволны.

5.Включить микроволны + гриль(в печах с грилем).

6. Часы.

Шесть основных функций (подфункции или функции расширения не столь важны потому как они не оказывают существенного влияния на процесс работы микроволновой печи).

Функции микроволновой печи задаются при помощи клавиатуры (рис1.12). Хочу обратить внимание на функцию «1. Задать мощность разогрева.».

Любая микроволновая печь позволяет изменить мощность, от минимальной мощности до максимальной. Чтобы печь работала не на полной, а на уменьшенной мощности, для этого периодически выключают магнетрон.

Рассмотрим как работает магнетрон на примере переключения четырех мощностей микроволновой печи.

1. Минимальная мощность — магнетрон включается на 4 с, затем отключается на 17 с, и эти циклы включения-выключения чередуются, покуда таймер не произведет отсчет установленного Вами времени работы печи.

2. Средняя мощность — магнетрон включается на 6 с, а отключается на 15 с, и эти циклы включения-выключения чередуются, покуда таймер не произведет отсчет установленного Вами времени работы печи.

3. Выше средней мощности — магнетрон включается на 10 с, а отключается на 11 с, и эти циклы включения-выключения чередуются, покуда таймер не произведет отсчет установленного Вами времени работы печи.

4. При максимальной мощности — магнетрон работает постоянно, покуда таймер не произведет отсчет установленного Вами времени работы печи.

Суммарная длительность циклов включения и выключения магнетрона постоянна (4 + 17, 6 + 15, 10 + 11) и составляет 21 с.

Основные узлы платы управления микроволновой печи:

1. Электронный индикатор (показывает текущее время, выбранную мощность разогрева, время разогрева или таймер отсчета, включенные устройства и возможно что либо еще в зависимости от модели печи).

2. Понижающий трансформатор (источник напряжения питающего схему модуля электронного управления).

3. Реле подачи напряжения 220в на первичную обмотку высоковольтного трансформатора (могут быть дополнительные реле для включения тена гриля, если микроволновая печь комплектуется грилем).

4. Разъем подключения шлейфа от клавиатуры.

Ремонт микроволновки своими руками, Конечно же самый основной узел модуля управления микроволновой печи — это процессор.

Модули управления микроволновыми печами могут отличаться, но суть и функционал не существенно.

Ремонт микроволновок своими руками.

2. МИКРОВЫКЛЮЧАТЕЛИ:

Микропереключатели (рис1.2) предназначены для блокировки дверцы микроволновой печи. В микроволновой печи их насчитывается обычно в количестве трех штук.

Два двухконтактных, верхний и нижний, их называют primary и secondary (первичный и вторичный). Третий- трехконтактный называется monitor switch. При открывании — закрывании дверцы, кнопка 1 отжимается — нажимается, тем самым размыкает — замыкает контактные группы.

Переключатели в сумме образуют некую систему переключателей. Их задача выключить подачу питания к узлам микроволновки и защитить печь от включения, когда дверь открыта.

3. МАГНЕТРОН:


О сновные составные узлы магнетрона представлены на рис 1.3

1. Колпачок. 2. Керамический изолятор. 3. Фланец с посадочными отверстиями для крепления. 4. Радиатор охлаждения. 5.Внешний кожух магнетрона. 7. Узел соединения с источником питания. 8. Выводы питания. 9. Кольцевые магниты (второй выше, сразу под фланцем 3) . 10. Корпус фильтра.

Магнетрон это вакуумный диод, анод которого выполнен в виде медного цилиндра (на рис1.3, должен быть под номером 6, но его не видно, так как расположен в центральной части конструкции радиаторов охлаждения 4).

На внутренней стороне медного цилиндра расположено четное число резонаторов (в основном 10). Качество резонаторов должно соответствовать следующим требованиям:

  1. Электрическое поле сосредоточено в зазоре резонатора.
  2. Резонаторы сильно связаны между собой.
  3. Высокая добротность.

Рабочее напряжение анода магнетрона лежит в пределах 3800 — 4000 вольт. Мощность составляет порядка 500 — 1000 Ватт. Напряжение накала от 3,15 до 6,3 вольта. Магнетрон крепится непосредственно на волноводе.

Катод не что иное как спираль из вольфрама, поверхность которого не гладкая (с целью увеличения эмиссии). Выводы катода через переход, выполненный из металлокерамики и высокочастотный фильтр подключены к внешнему разъему.

Промежуток между анодом и катодом (пространство взаимодействия), ограничен металлическими пластинами на каждом из торцов. Что препятствует выходу электронов и СВЧ поля из этого пространства.

Магнитное поле в пространстве взаимодействия создается двумя кольцевыми постоянными магнитами (рис 1.3 9) и магнитопроводом (корпус и фланец).

СВЧ фильтр состоит из катушек индуктивности на ферритовом сердечнике и проходных конденсаторов (расположен в корпусе фильтра рис 1.3 10).


4. ТЕРМОРЕЛЕ (ТЕРМОПРЕДОХРАНИТЕЛЬ):

Термореле (термопредохранитель) предназначено для отключения микроволновки на случай ее перегрева. Термореле может устанавливаются на магнетрон, внешнюю поверхность камеры и бывает на трансформатор, вентилятор и воздуховод.

Само — название «термореле» говорит само за себя, то есть это реле срабатывает от определенной температуры. Контакты (выводы) термореле микроволновых печей, в исходном состоянии замкнуты, а при нагреве их контактные группы размыкаются.

Термореле, установленные в разных местах микроволновки, имеют разные номинальные температуры срабатывания (размыкания). При остывании термореле, контакты термореле замыкаются. Возвращаясь тем самым в исходное состояние.

5. ВЫСОКОВОЛЬТНЫЙ ТРАНСФОРМАТОР:

Высоковольтный трансформатор (рис 1.5) служит для повышения напряжения с 220в до 2100в. Чтобы убедиться в исправности трансформатора, необходимо прозвонить все обмотки.

1. Вторичная (высоковольтная) обмотка должна звониться на корпус. Один конец идет к предохранителю, второй к корпусу.

2.Вторичная (низковольтная) обмотка и первичная обмотка не должны звониться на корпус.

Ремонт микроволновых печей своими руками. Ремонт микроволновок самостоятельно.

6. ПРЕДОХРАНИТЕЛЬ:

Высоковольтный предохранитель (рис 1.6) предназначен для защиты высоковольтного трансформатора от перегрузок. В некоторых моделях микроволновых печей, высоковольтный предохранитель вообще не устанавливают.

Провод идет прямо на конденсатор. Дело в том, что предохранитель, который находится в фильтре питания, отлично защищает высоковольтные цепи от перегрузок. Иначе говоря отлично справляется с возложенной на него задачей.

7. ВЕНТИЛЯТОР:

Вентилятор (рис1.7), его предназначение — охлаждение магнетрона. При мощности магнетрона 750 - 850 Вт он должен обеспечивать плотность воздушного обдува 1 м 3 мин.

8. СЕТЕВОЙ ФИЛЬТР:

Фильтр (рис1.8) — это плата небольших размеров. Установлена в верхней части микроволновки, в месте подвода кабеля подачи напряжения питания. Сетевой фильтр выполняет функцию распределителя напряжений.

На высоковольтный блок через предохранитель большего тока. На электронный модуль управления через предохранитель меньшего тока. Основная функция фильтра питания-это распределение напряжений и защита от скачков напряжения и высокочастотных помех.

9. НАКОПИТЕЛЬНЫЙ КОНДЕНСАТОР:

Высоковольтные конденсаторы рассчитаны на напряжение 2100 В. Каждый конденсатор маркирован и имеет такой параметр маркировки как предельное напряжение – 2100 В.

Отличаются конденсаторы для микроволновых печей номинальной емкостью. Номинальная емкость конденсаторов микроволновых печей лежит в диапазоне от 0,86 мФ до 1 мФ. Конденсаторы не полярные.

Как подключены к нему выводы, значения не имеет. Конденсатор внутри себя содержит резистор сопротивлением 10 МОм. Этот резистор и обозначен на корпусе конденсатора. Служит он для разряда конденсатора.

Время разряда лежит в пределах 30-40 секунд (около минуты). Но если Вам захотелось по каким либо причинам, после выключения микроволновой печи, дотронутся к выводам конденсатора. Совету

ю не ждать покуда он сам разрядится, а замкнув на корпус или выводы между собой, разрядить самостоятельно.

10. ВЫСОКОВОЛЬТНЫЙ ДИОД:

Высоковольтный диод микроволновой печи — это группа диодов в одном корпусе, соединенных последовательно.
Убедится в исправности диода — это проверить его на короткое замыкание.

Делается это прозвонкой при помощи прибора, короткое замыкание — часто встречающаяся неисправность у диодов данного типа.

11. ДВИГАТЕЛЬ:

Двигатель (рис 1.12), предназначен для вращения тарелки (поддона) микроволновой печи. Двигатель включается и начинает выполнять свою функцию в момент старта микроволновой печи.

Через отверстие в поддоне внутренней камеры микроволновой печи, вставляется специальная насадка со своеобразной крестовиной. На эту крестовину ложится тарелка, края которой опираются на кольцо.

Кольцо диаметром немного меньше внешнего диаметра тарелки. Кольцо имеет по своему диаметру колесики. Тарелка центральной частью опирается на насадку с крестовиной, а внешним диаметром на кольцо с колесиками.

Таким образом получаем устойчивую вращающуюся конструкцию.

12. КЛАВИАТУРА:

При помощи клавиатуры (рис 1.12) Вы задаете необходимый режим работы Вашей микроволновой печи. Устанавливаете таймер, включаете — отключаете работу гриля (если таковой имеется), устанавливаете мощность микроволн (режим работы магнетрона), можете задать одновременную работу гриля и микроволн.

При помощи клавиатуры можете установить отображение текущего времени на табло. В более продвинутых по функциональному наполнению электронных модулях управления микроволновыми печами, есть функция отложенного приготовления.

Другими словами Ваша микроволновая печь может начать приготовление продукта лишь после отсчета некоторого времени, к примеру это может быть час или два.

13. ТЕН ГРИЛЯ:

Тен гриля (рис 1.13) — это инфракрасный излучатель. Он выполнен в виде мощного нагревательного элемента. Существует две модификации тена:

1. Заключенного в керамические цилиндры.

2. Заключенного в кварцевые цилиндры.

3.Заключенного в металлическую оболочку (рис 1.13).

Гриль медленнее нагревает продукты, из-за более низкого КПД и большей инерционности.

Но в отличие от микроволн, которые нагревают продукты изнутри, гриль нагревает снаружи, образуя тем самым приятную корочку.

14. ПРИНЦИПИАЛЬНАЯ ЭЛЕКТРИЧЕСКАЯ СХЕМА ВЫСОКОВОЛЬТНОГО БЛОКА ПИТАНИЯ:


( T1 — , C1, D1 — Высоковольтный диод рис 1.10)

Один из выводов высоковольтной обмотки трансформатора соединен с его корпусом (рис 14, нижняя часть схемы вторичная высоковольтная обмотка трансформатора Т1) , который обычно заземляется.

Примем, что потенциал на этом выводе постоянен и равен нулю. Следовательно на втором выводе напряжение в течение периода будет изменяться от +U до -U. Когда напряжение на выводе положительно, диод D1 открыт, напряжение на магнетроне равно нулю.

Конденсатор заряжается до амплитудного значения переменного напряжения. Когда напряжение на выводе отрицательно (изменит свой знак), диод D1 заперт.

В этот момент на магнетрон М1 поступит удвоенное напряжение, полученное суммой напряжений на трансформаторе Т1 и на зарядившемся конденсаторе C1 . Работа магнетрона сопровождается постепенным разрядом конденсатора C1.

Накальная обмотка высоковольтного трансформатора Т1 (рис 14, верхняя часть схемы вторичная высоковольтная обмотка трансформатора Т1) одним из выводов соединена с высоким анодным напряжением, поэтому на выводы магнетрона М1 одновременно подается переменное напряжение накала 3.15 В и постоянное анодное напряжение 4.0 кВ.

Для магнетронов с катодом прямого накала без разницы, какой из накальных выводов соединен с анодным напряжением. При использовании магнетронов с косвенным накалом анодное напряжение следует подавать на вывод FA. В.

Для удовлетворительной работы магнетрона необходимо выполнение условия, чтобы анод имел положительный потенциал +4.0 кВ по отношению к катоду. Какой из электродов заземлен, значения не имеет.

Так как корпус магнетрона непосредственно соединен с анодом, следовательно именно он имеет нулевой потенциал.

Чтобы Получить эту статью и получать другие, на свой электронный адрес, введи свой адрес электронной почты в форме ниже и нажми кнопку «Да вышлите Сейчас!». Вводи адрес электронной почты, подтверди подписку и получай все лучшее на свой электронный адрес бесплатно.

Вещь-то оно вещь, да вот вопросов больше чем ответов. Уровень у нас с вами несколько слабоват в этом вопросе. И решил я свой уровень приподнять! Взять, да и поспрашивать людей сведущих. Да не одному это сделать, а вместе с вами. Хочу написать цикл статей, посвященных силовой импульсной технике, в нашем с Вам разрезе интересов - питания ламповых усилителей звука. Постараюсь проиллюстрировать все возможное, но так же прошу меня простить, заново переделывать ИБП ради фотографирования всего процесса, желания не имею, и буду пользоваться уже имеющимися материалами. Думаю, их будет более чем достаточно для усвоения материала.

Примерно так будет выглядеть оглавление

1. Где взять инверторную микроволновку? Желательно без денег!

2. Как проверить? Или, что теперь с этим хламом делать?
Техника безопасности - Приступаем к лечению - Реализация стенда - И вот он наш герой! - Схемотехника - Проверка - Блок работает, но не долго - Не запускается совсем - Реконструкция трансформатора - Проверяем работу

3. Управление блоком питания
«Примитивный» способ управления - «Посредственный» способ управления - Нормальный способ управления

4. Как устроен блок? Как ремонтировать? И какая редкая сволочь это все придумала?!
Как устроен - Цепи питания - Детектор входного напряжения - Детектор входного тока - Детектор синхронизации (нуля, фазы, фронта)? - Цепи коммутации питания первичной обмотки - Трансформатор - Детектор чего-то? - Выпрямитель - умножитель - Цепи управления - Драйвер

5. Как разобрать и переделать «под мои нужды и веру»?

6. Как теперь с этим жить, если не поделюсь с друзьями радостью?!

А теперь к делу. Вот есть, к примеру, конкретное устройство. По-нашему, по-простому, называется так: Устройство комбинированное - «Генератор синусоидальных сигналов сверх высокой частоты и высокой выходной мощности с комбинированной резонансной камерой переменной нагрузочной способности». Можно и по другому назвать и сформулировать более точно, но, по моему мнению, суть от этого уже не изменится.

В народе это устройство приобрело страшно неточное название - «Микроволновка». В быту ее название печь микроволновая. Стоить заметить, что с точки зрения маргинала, устройство печи простое, если не сказать примитивное. Потому и стоит она просто смешные деньги. И ремонтировать их стали все меньше и меньше. Фирмы производители склонны попросту заменять готовые блоки, по причине их невиданной дешевизны. А поломанное куда? В мусор!

Я против мусора! Мне стыдно, что мы люди, что бы ни изобрели, с момента его (изобретения) появления на свет это уже мусор! Либо это, нечто, должно быть поистине ценностью! Тогда есть шанс, что дело рук Ваших не станет мусором! Вот поэтому, мы попробуем некоторым вещам дать вторую жизнь!

1. Где взять инверторную микроволновку? Желательно без денег!

И начнем Мы с вопроса: где взять? Можно конечно на свалке... Но не стоит так утруждаться! Достаточно дать объявление (можно даже бесплатно на столбах в районе расклеить): «Куплю микроволновку в любом состоянии, дорого». И к вам начнут звонить, звонить, звонить...

Если Вы легкомысленно спросите бабулю, сколько она ХОЧЕТ получить, то услышите цену НОВОЙ(!) микроволновки! Я это проверял на себе несколько раз! Это теперь я могу купить самую дорогую микроволновку, распотрошить ее и даже не вспомнить, сколько я за нее заплатил! А раньше я покупал микроволновки по 100 - 200 рублей и чуть не плакал от счастья! Спросите бабушку нежно и вкрадчиво, сколько она думает за нее получить... Бабушка, тут же вычтет из цены новой микроволновки цену ремонта (она эти цифры уже знает) и скажет заветную цифру Вам. Именно столько по ее мнению и стоит оставшийся хлам. И поверьте, она так считает искренне, иначе давным-давно выбросила бы микроволновку на свалку, а не «заштырила» ее в чулане. Теперь Вам совершенно необходимо взять эту «новую» цену за основу и сразу заявить, что печка-то б/у и следует цену как минимум поделить на половину. И, о чудо, бабуля соглашается, не моргнув взглядом! Обычно это рублей пятьсот-девятьсот в остатке. Потом следует добавить, что вы хотите очень внимательно осмотреть аппарат на предмет повреждений и прочих неприятностях, которые, по вашему мнению, тоже влияют на цену изделия. Вы же пришли покупать вещь! Хоть и поломанную. И упаси Вас Бог пытаться «причесать» бабуле, что то, зачем вы пришли и хотите унести с собой, сущий хлам и Вам вообще не следовало сюда приходить. Бабули - стихийные психологи! Раскусят Вас в один миг! Будьте честны с ней! Торгуйтесь! Объясняйте, что вы не «Рокфеллер», и что вы в одиночку, в нужде и опасностях, поднимаете уровень образованности населения страны на свои кровно заработанные деньги! И что у бабули остался единственный шанс помочь юному населению страны преодолеть кризис. Я думаю, что каждый из Вас, дорогие мои, может найти теплые слова в адрес человека, который прожил свою жизнь рядом с Вами и сумел не напакостить Вам лично. Поверьте оно того стоит!

И вот она почти у Вас! Убедитесь, что вы покупаете именно то, за что платите! Вскройте микроволновку прямо при бабуле. Сообщите, что камера выпекания здорово повреждена с внутренней стороны, и вы ее (камеру) брать не хотите и не будете. Но, что бы уж совсем не уходить с пустыми руками, Вы согласны взять из внутренностей вот ЭТО и вот ТО. И так как большая часть микроволновки остается у бабушки в виде ящика для хранения хлебобулочных изделий, то конечную цену нужно еще раз обсудить. Постарайтесь сильно не обманывать бабушку. Стоимость импульсного блока питания мощностью от 600 до 1300 ватт стоит уж никак не менее 500 рублей, а для бабушки это большие деньги. Не жадничайте! Удачной Вам в охоты, друзья мои!

2. Как проверить? Или, что теперь с этим хламом делать?

Если вы не забрали всю микроволновку, то зря! На чем вы теперь будете проверять работоспособность блока питания? Можно конечно собрать нагрузку в один киловатт из старых зеленых керамических сопротивлений, каждое размером с кулак. А можно и микроволновку починить. И использовать в дальнейшем в качестве испытательного стенда.

Как правило, чаще всего, в инверторной печи ломается только две вещи - магнетрон и ИБП. Остальные компоненты столь редко выходят из строя быстро, что ими можно пренебречь. Нам ведь главное «вкл» и «выкл». Вот об этом мы сначала и поговорим.

Техника безопасности

В микроволновой печи все имеет значение и ничего не стоит упускать из виду. Если энергию микроволн нельзя потрогать, это не значит, что их нет. Они есть! А если они есть, то предназначение печи в том, что бы создать условия, при которых энергия микроволн будет направлена в нужный объект, и этот объект поглотит направленную в него энергию, нагреваясь при этом. В целом проблема заключается в том, что если энергия микроволн не будет поглощена, то:

1. Энергия, частично, а иногда вся, вернется в магнетрон. В результате длительного (секунды - минуты?) воздействия, в конце концов, разрушит его. Чаще всего это перегрев и деформация анодных ламелей или разгерметизация с пробоем электрического разряда в катод.
2. Магнетрон выключится от перегрева, и ИБП будет молотить сам на себя и ему тоже крышка. Почему? Будет ниже.

Ну, и не забываем про технику безопасности. Категорически (!) нельзя блокировать разрыватели на дверце и включать микроволновку с открытой дверцей, что бы лично посмотреть, как там микроволны работают. На этом все развлечения и эксперименты закончатся. Роговица глаз будет разрушена, если глаза не лопнут раньше от перегрева внутриглазной жидкости. Надеюсь все всем ясно?!

Приступаем к лечению

Я уже упоминал, что у меня есть друг - Перистый Виталий Федорович. Рукастый и головастый самоделкин. С раннего детства он посвятил свою жизнь электрическим цацкам. Я не слышал ни одного воспоминания о его детстве, где не было бы лампы или трансформатора. По первому образованию он - радио инженер. Именно РАДИО. Поэтому вся его жизнь это радиоприемники. У него, кстати, есть великолепная коллекция первых радиоприемников. Если у кого-то есть желание сохранить жизнь радиоприемнику, превратив его в музейный экспонат - дайте знать мне. А я уж Виталию передам в лучшем виде.

Итак, я попросил Виталия смастерить этакий стенд для проверки работоспособности ламп (магнетронов) и блоков питания. Не стану описывать, как в камеру микроволновки была вставлена силиконовая трубка, смотанная в виде спирали. Где мы привесили водяной насос от стиральной машинки и подходящий бачек для воды, что бы гонять по кругу и охлаждать жидкость одновременно. И еще много чего навесили. Это отдельная статья, и если Вы пожелаете, то я конечно же напишу про это чудо - стенд для проведения экспериментов с микроволновыми устройствами.

Реализация стенда

В Вашем случае все можно упростить до минимума. В камеру микроволновки поставим литровую банку с налитой в нее водой с начальной температурой около 20 градусов Цельсия. Для первых работ этого более чем достаточно. Лучше всего запастись хорошими измерительными приборами, но и косвенно все проверить можно! Микроволновка или работает или нет. В идеале следует иметь заведомо исправный магнетрон и заведомо исправный ИБП. Но если этого нет?

Следует проверить, работает ли собственно ИБП. Для примера, берем схему ИБП, с которым я работал - 1300 Вт. Я видел вживую и меньший ИБП (800 Вт), и даже трогал его руками, но он меня мало заинтересовал. Так же мне известно, что принципиальной схемотехникой эти два устройства мало чем отличаются друг от друга. Отсюда, для объяснения работы устройства, я буду пользоваться тем, что есть и не морочить себе и Вам голову. Кому, что не ясно будет, можно «спросить» меня отдельно, и я уточню.

И вот он наш герой!

Как я уже писал, в целом оказалось, что блок собран как регулируемый источник тока со стабилизированным напряжением. Я не совсем понимаю, как это происходит, так как там загадочный чип-драйвер стоит. Естественно описания на этот чип я так и не нашел. Но! Работает он надежно. Стабильность выходного напряжения держит неплохо. При плавном изменении входного напряжения питания от 110 до 220 Вольт совершенно нормально, на мой взгляд, удерживает выходные параметры. Штатное напряжение накала - 3,15 V и напряжение анода - 2,6 kV. С помощью управляющего ШИМ-сигнала можно регулировать выходной ток (ток анода) в пределах от 0,1 - 0,2А до 1А.

Схемотехника


К моему великому сожалению, сколько я не искал нормальную схему этого ИБП, так и не нашел. Думаю, мне следовало обратиться к разработчикам, так, где ж их взять?! У сервисных инженеров полной схемы просто нет. Или я не нашел, хотя перекопал кучу информации в сервисном центре. Снова выручил Перистый Виталий! Мужественно и стойко он восстановил схему по готовому устройству. Смотрим ниже.

Забегая немного вперед, следует сказать несколько слов о самой схеме. Специалисты сразу увидят ряд типовых решений заложенных в схему блока. Здесь и контроль входного напряжения, и контроль мощности и прочие не менее важные вещи. Однако имеет смысл разобрать схему отдельно и по порядку. И сделаем мы это в следующей статье - «Как устроен блок? Как ремонтировать? И какая редкая сволочь это все придумала?!»

Для начинающих скажу сразу: существует простая последовательность действий, которая позволит определить работоспособность ИБП без особых разбирательств структуры схемы и особенностей ее работы. Мы ведь понимаем, что купили ПОЛОМАНУЮ микроволновку! А значит, ее совершенно необходимо починить. Или, в крайнем случае, удостоверимся, что импульсный блок питания работоспособен.

Проверка

Для проверки аккуратно снимаем кожух микроволновки. Отвернув задние винты крепления кожуха, аккуратно и с приличным усилием сдвигаем весь кожух в направлении задней стенки. Это нелегко, так как в кожухе существует рамка защелка по всей верхней части корпуса у передней стенки.

Итак, вы ничего не сломали и кожух снят. Не включая вилку в розетку электропитания, ищем, где установлены предохранители. Их, как правило, два. Хотя бывают исключения. Один стоит на плате фильтра электропитания. Иногда на этой же плате, в зависимости от модели стоит устройство первичной коммутации (реле). Второй (иногда) сразу перед ИБП, иногда после. Имеется в виду высоковольтный предохранитель с пружинкой и в дополнительном пластиковом корпусе.

Сначала следует проверить цепи электропитания на целостность. Обратите внимание на термический размыкатель, который установлен либо на корпусе магнетрона, либо на корпусе волновода. Говорят, что иногда их бывает два последовательно! Не видел ни разу. Этот размыкатель разрывает цепь питания 220V по перегреву магнетрона или стенки волновода. Бывает, что они выходят из строя и портят всю малину для хозяек. Предполагая, что печь сломалась очень-очень, хозяйки боятся нести в ремонт из-за его дороговизны. Мне такая печь однажды попалась. Я потом дополнительно бабушке десять сотен принес. Однако совесть...

И вот, цепи электропитания внимательно проверены, и нужно включать печь. Следует отметить, что по условиям работы печи электропитание подается на ИБП сразу по включению печи в сеть. Никаких дополнительных устройств коммутации не предусмотрено. А сделано так потому, что загадочный чип, встроенный в ИБП, должен быть запитан сразу. Если сначала подать управляющий сигнал в ИБП, а потом включить 220V... Ничего не произойдет. Блок питания не включится!!! Очень рекомендую это запомнить.

Проверяем наличие 220V на клеммах контактов ИБП. Есть? Очень хорошо. Идем дальше. Отключаем 220V!!! Обязательно это делаем! Теперь аккуратно вынимаем ИБП из штатного места и снимаем пластиковый защитный кожух. Аккуратно закрепляем его (ИБП) в таком положении, чтобы не замкнуть ничего лишнего на корпус. Я пользуюсь пластиной из поликарбоната.

Если у Вас имеется заведомо исправный магнетрон, то следующие несколько абзацев можно пропустить. Потому, что мы поставим литровую банку с водой в камеру микроволновки. Аккуратно отсоединим зеленый провод блока питания от корпуса микроволновки и в разорванную цепь включим измерительную головку амперметра со шкалой до 1 А.

Если такого нет, то подойдет 5 или даже 10 А. Про рабочее напряжение головки и уровень защиты можно не думать. Потому, как амперметр подключен к корпусу, то высокого напряжения на нем не будет и поэтому все в порядке. Все это мы делаем для организации визуального контроля тока анода. В нормальном состоянии ток анода магнетрона не превышает 0,6А при включении на полную мощность. Если вы все сделали правильно, амперметр и магнетрон были заведомо исправны, то дальше можно перейти к пункту поиска неисправностей. Если заведомо исправного магнетрона и амперметра под руками нет, то внимательно читаем следующий абзац.

Очень аккуратно отсоединяем контакты на ИБП, от которых идут высоковольтные провода на магнетрон. Можно не бояться остаточного напряжения, так как ламели имеют силиконовую изоляцию, однако настоятельно рекомендую, перед тем как браться за них руками, аккуратно замкнуть оба этих контакта на корпус микроволновки. Береженого Бог бережет.


Внимание! Категорически запрещается отсоединять зеленый провод, соединяющий ИБП с корпусом печи. Лучше выпаять его конец из платы и далее делать все манипуляции.
Далее на плате ИБП следует сделать видимый разрыв цепи на этом участке.

Следует обратить Ваше внимание, что на выходе анодной обмотки трансформатора стоит выпрямитель с удвоением напряжения. Почему? Я буду объяснять значительно позже, но сейчас отмечу, что этого решения достаточно для работы магнетрона и вряд ли кто-то придумает вариант выпрямления напряжения питания более экономичный. Поэтому заметив, какие ножки высоковольтных диодов припаяны к цепям, идущим к обмотке трансформатора, отпаиваем их и вытаскиваем. Не стоит выпаивать обе ножки диодов во избежание путаницы как правильно стоял диод до того момента как вы его выпаяли. Данная операция обезопасит вас от ненужных пробоев удвоенного напряжения в 2600 Вольт и мощностью почти в один киловатт! Не нужно рисковать более необходимого.

Сделав видимый разрыв, на печатной плате как показано на схеме выше, проверив и убедившись, что контакта нет совсем, теперь понимаем, что высокое напряжение нам не очень страшно. Соблюдая технику безопасности при работе с высоким напряжение, не задевая компоненты блока, находящиеся под высоким напряжением, подключаем подходящую нагрузку к обмотке накала. Благо там напряжение не превышает 4 V. Лучше всего взять подходящие ламельки контактов и припаять к ним нагрузку, или использовать нечто похожее на ламельки. Можно и нужно нагрузить обмотку накала не менее 150 ватт, но лучше - 250 Вт (примерно 80 Ом). У меня лампочка накальная есть подходящая 6 V 200W от киноаппарата старого, но думаю, что могут подойти лампочки от мотоцикла, если их взять в необходимом количестве и параллельно собрать.

Включаем микроволновку. Программируем включение на 10 секунд и нажимаем кнопку «Пуск». Светится лампочка?! Ура! ИБП работает! Теперь программируем на 30 секунд. Светится лампочка?! Не гаснет через несколько секунд? Прекрасно! Быстро все выключаем и переходим к разделу: Как разобрать и переделать «под мои нужды и веру»? Если не светится, или светится, но через несколько секунд гаснет, следует выполнить ряд следующих мероприятий. Я, кстати, настоятельно рекомендую все нижеописанные операции проделать и с заведомо исправным блоком. По крайней мере, Вы будете точно знать, что, как и почем.

Итак, что-то не работает. Теперь нам понадобится осциллограф. Любой, даже самый примитивный и косо работающий, так как нам совершенно необходимо удостовериться в наличии управляющих сигналов. Они, сигналы находятся на маленьком и весьма неудобном разъеме. Рекомендую его сразу поменять на разъем, показанный на фото ниже.


Если вам лень менять разъем можете оставить все как есть, однако потом все равно придется его менять. Штатный разъем очень не удобный для наших нужд. Ну вот, поменяли. Теперь можно работать дальше. Смотрим в схему.


Обратите внимание, что управляющие сигналы имеют гальваническую развязку. Контакт № 2 соединен с общим проводом блока УПРАВЛЕНИЯ. Контакт № 1 - выходной сигнал. Контакт № 3 - входной сигнал. Что все это значит? А то, что блок питания напрямую включен в сеть и это очень опасно для бортовой электроники, и не только для нее. Поэтому у блока питания развязка по управлению и развязка по высокому напряжению на вторичной стороне транса. Всем все ясно? Общих проводов с сетью нет!

Подключаем общий провод осциллографа к контакту блока № 2. Щуп осциллографа ставим на контакт блока № 3. Включаем микроволновку, программируем на 10 секунд, «Пуск». Смотрим. На экране должен появиться меандр с частотой примерно 220 Гц. Скважность меандра зависит от того, какую мощность вы установили при программировании. Если ничего не меняли, то примерно сигнал выглядит так, как показано на рисунке ниже.


Если вы установите мощность в 50%, то меандр будет иметь вид прямоугольных импульсов со скважностью два. Если вы установите минимальную мощность, то сигнал будет выглядеть с точностью до обратной формы сигнала от сигнала, изображенного на картинке выше.

Включаем, программируем на 10 секунд, «Пуск». Есть управляющий сигнал, но не долго, секунд 5. После этого сигнал пропадает и больше не появляется до следующего «Пуск».

Блок работает, но не долго

Блок запустился, и мы видели вспышку лампочки на несколько секунд. Однако команда «ОК» (выходной сигнал) на блок управления не прошла. Ищем почему. ОТКЛЮЧАЕМ ПЕЧЬ ОТ СЕТИ! Сначала проверяем цепи. Нормально? Тогда, АККУРАТНО (!!!) припаиваем провод на контакт № 4 платы драйвера. Это «условный» общий провод блока питания. Подключаем к этому проводу общий провод осциллографа. Отдаем себе отчет, что общий провод осциллографа теперь через диодный мост блока питания напрямую подключен к сети. Кто не понял почему, внимательно смотрит схему. Кто все равно не понял, немедленно прекращает работу и больше за нее не берется до тех пор, пока однозначно не поймет, почему все так испугались. Проверьте, что ваш осциллограф ничем не касается корпуса микроволновки. Теперь припаиваем провод к контакту № 13. Это выходной сигнал «ОК». Еще раз проверьте, что ваш осциллограф ничем не касается корпуса микроволновки. Включаем, программируем, «Пуск». Если блок питания нормально запускается, то на экране осциллографа вы увидите все тот же меандр. Немного форма отличается и амплитуда пониже. Нет меандра? Драйвер следует менять целиком. Есть меандр? Хорошо, переключаем осциллограф обратно, как было. И не забудьте выключить вилку из сети!

Подключаем общий провод осциллографа к контакту блока № 2. Блока! Не драйвера! Щуп осциллографа ставим на контакт блока № 1. Смотрим на схему и видим, что выходной транзистор первой (выходной) оптопары включен с открытым коллектором. И если мы его отключим от блока управления, то контролировать его работу будет невозможно. Значит, следует его чем-то запитать с нагрузкой. Рекомендую включить в цепь транзистора резистор и светодиод. Очень удобно наблюдать за работой устройства. Теперь рассмотрим вероятную проблему.

Бывает, что выходная оптопара не работает, если ток питания светодиода в выходной оптопаре слабенький и не позволяет светодиоду открыть переход транзистора в достаточной мере. При этом идея поменять оптопары местами не помогает. Для нормально работы оптопары рекомендую снизить номинал резистора R732 с 11к до 5,1к. Что уж там внутри драйвера не так не знаю. Где-то 30% всех подобранных мною ИБП имели именно эту причину отказа. На этом, кстати, начинающие ремонтеры и срезаются. Хотя, ремонтеры не парятся и просто меняют блок целиком по гарантии. А блок? А блок просто выкидывают...

Не запускается совсем

Блок питания не запустился, и электроника блока питания не дала команду «ОК» на блок управления. Выходной сигнал не появился совсем, сколько мы его не искали. Грустно, но не смертельно. Сначала следует убедиться в том, что основные элементы блока питания в рабочем состоянии. Сделать это весьма не просто. Я бы даже сказал сложно. Чаще всего из строя выходят четыре элемента в примерно следующей последовательности.

Возникает резонанс или наоборот исчезает, не знаю. От этого сгорает транзистор Q702 (GT30J322). Он слабенький и поэтому чаще всего сгорает. В общем, его можно легко заменить на его старшего брата - Q701 (G60N321). Однако отдельно следует отметить, что в этом случае совершенно необходимо использовать слюду, так как транзистор нужно изолировать от корпуса радиатора. Поле выхода из строя Q702 за ним следом уходит в небытие диодный мост DB701 (RS2006M).

Иногда возникает «сквозняк» и мы теряем Q701 (G60N321), а за ним диодный мост. Хотя иногда случается диодный мост выживает, но очень-очень редко. В общем, транзисторы это печаль, хотя я покупал их по $1 за штуку. Цена вроде не умопомрачительная.

Иногда бывает обрыв обмоток или межвитковое замыкание. Я, в общем, сразу выпаиваю трансформатор и проверяю его на целостность. Нормальный транс не вызывает вопросов даже по внешнему виду. Если обрыв обмоток, это видно по приборам. Если замкнулись витки - по внешнему виду. Оплавился бедняга. Как его после этого починить читаем дальше.

Чиним трансформатор

Нужно было аккуратно разобрать транс и перемотать накальную и анодную обмотки сразу так, как нужно. Все равно блок питания убитый.
ВНИМАНИЕ!!! Зазор в сердечнике трансформатора не для прикола! Если Вам нечем замерить штатную (начальную) индуктивность транса по первичной обмотке, что бы после реконструкции привести к начальному значению, то не стоит и напрягаться! Спалите блок питания меньше чем за секунду после включения. У меня так и получилось. Благо запасся ИЖБТ - транзисторами загодя. Я не стану приводит номинальное значение индуктивности специально, так как сам не знаю какое оно должно быть изначально. В том смысле, что, сколько я не мерил всегда получал разное значение. Наверное, как-то можно настраивать сам блок питания под текущее значение индуктивности, но мне такая информация не попадалась, поэтому меряем индуктивность до разборки и настраиваем зазор транса на начальное значение после реконструкции.

Теперь, выпаиваем и разбираем транс. Что бы его разобрать нужно, нагреть сердечник. Нагреть сердечник можно в микроволновке! С обмотками ничего не случится, не бойтесь. Сердечник нагреется быстро и его можно сразу расклеить. Если микроволновки под руками нет, можно нагреть сердечник двумя стоваттными паяльниками. Можно как AlexD варить его пару часов в кипятке. В общем, кому что удобнее.

Если без хвастовства, то первый сердечник мы поломали. На фотке видно как мы его потом из кусков склеили клеем «Хват».


Итак, разобрали. Вытаскиваем внутреннюю катушечку. Или то, что от нее осталось. Все равно ее нужно переделать так как, не помещаются все желаемые обмоточки.

Реконструкция трансформатора

Катушечку можно сделать из куска полипропиленовой трубы, а щечки для секций из поликарбоната. Обычно достаточно четыре-пять секций. Все склеиваем двухкомпонентным клеем «Хват». Правда, дополнительную накальную обмотку можно мотать прямо по верху. Но для этого рекомендую взять провод типа ПЛМ-200. Он бывает с сечением от 0,5 до 1 мм. Многожильный (иногда посеребренный) с фторопластовой изоляцией и в стекловолоконной рубашке.


После переделки это выглядит так. Как видно на фотографии все очень даже поместилось.


Теперь совсем хорошо. Можно нагружать обычными подходящими нагрузками, но не менее 300 Ватт. Быстро перегреваются транзисторы на полной мощности. Либо следует сразу половинную мощность давать.

Проверяем работу

Если вы все сделали правильно, поменяли транзисторы, диодный мост, реконструировали или починили трансформатор, имеете заведомо исправный драйвер (бывает, что и они дохнут) то... После включения на выходе № 1 блока питания появится сигнал «ОК» в виде меандра, что свидетельствует о здоровье блока питания в целом. Если этот сигнал появился на входе блока управления, то все будет работать так долго, как вы запрограммировали.

3. Управление блоком питания

Хотел «слить» эту статью на попозже, но понял, что некоторые из Вас будут этим очень не довольны. Поэтому тут обсуждаем, как инверторным блоком питания будем управлять.

Как уже писалось ранее, управляющий сигнал имеет прямоугольную форму импульса (меандр) с частотой примерно 220 - 240 Гц. При этом скважность сигнала изменяется в заданных приделах от 1:10 до 10:1. Для тех, кто не понял.

Так выглядит сигнал на уставке в 99% мощности.

Так выглядит сигнал на уставке в 50% мощности.

Так выглядит сигнал на уставке в 10% мощности.

Что не ясно теперь? Как этого достичь? Существует несколько способов: примитивный, посредственный, нормальный.

«Примитивный» способ управления

Для начинающих и не особо стремящихся поднатореть, приведем схему, которая поможет не только поэкспериментировать с блоком питания, но возможно и в дальнейшем получить возможность использовать это в схеме.


Генератор, собранный по приведенной схеме, выдает сигнал прямоугольной формы примерно на частоте 240 Гц. С помощью переменного резистора скважность меняется в заданном пределе. Навешивая дополнительные резисторы в правом и в левом плече переменного резистора можно установить ограничения в изменении скважности, так, как вам необходимо. Хотя стабильность работы и оставляет желать лучшего, для устойчивого управления анодным током достаточно.

«Посредственный» способ управления

Следующая схема более сложна. Перерисовывать мне ее лень. Поэтому я отсканировал и положил ее, так как есть. Реализована она была моим приятелем Михаилом. Где-то в недрах интернета он набрел на такое чудо язык программирования как - TINI-Basic. Это странный, бесплатно распространяемый продукт, с помощью которого самый начинающий «программист», может запрограммировать AT Mega-8. Для своих нужд небольшого уровня. Хотя как знать, что называть небольшой уровень. Видел я на этих мелких «процах» довольно приличные вещи.


Представленная схема хоть и сложнее на первый взгляд, делает то же самое, что и первая, но скважность тут меняется программно по установленной обратной связи от детектора анодного тока. Детектор анодного тока, совершенно примитивный токовый трансформатор, включенный последовательно в цепИ: вторичная обмотка блока питания - корпус. Токовые сигналы считываются, и мощность корректируется в соответствии с заранее запрограммированному значению по 232 (485) протоколу. В общем, не рекомендую данную схему. Попробуйте придумать свою.

Нормальный способ управления

Мне жаль Вас разочаровывать, но я не нашел сбалансированного решения, где можно было бы заранее программировать работу блока питания. Я имею в виду тот самый чип-драйвер. Если кому интересно я вышлю схему обвязки этого загадочного зверя и добавлю, что если кто-то разберется, как этим зверем можно управлять и после этого напишет мне... Я готов обсуждать сумму вознаграждения с четырьмя нулями.

Я понимаю, что не обязательно знать, как именно работает чип. Можно подергать цепи управления и понять, как на него можно воздействовать. Спалить пару десятков транзисторов... Но, лучше знать наверняка! А может кто-то сможет свою плату драйвера разработать, тогда готов обсуждать сумму вознаграждения с пятью нулями. Естественно все расчеты мною берутся в рублях. А то подумаете, что я про североамериканские ценные бумажки.

В следующей статье

В следующей статье, мы поговорим об устройстве блока. О том, как правильно его эксплуатировать и ремонтировать. И о том, как часто начинающие инженеры палят блоки и горюют с мрачной мыслью: - И какая редкая сволочь все это придумала?!
Как устроен блок? Как ремонтировать?
Тут я буду описывать только то, что знаю или понял сам. Я не претендую на истину в последней инстанции и возможно, что кто-то дополнит или поправит меня. Буду очень благодарен, если кто-то разберется с этим зверем «по-хорошему», и научит меня или моих специалистов как использовать ИБП во всех тонкостях. Разберем схему по кусочкам, а заодно проверим все необходимые цепи. Если они, цепи, будут в порядке, ИБП не может не работать.

Понравилось? Палец вверх!

  • всего лайков: 30