Словарь измерительных приборов. Толщиномеры для машины

В это трудно поверить, но высоту дерева определили при помощи очень длинной измерительной ленты; однако существуют и намного более простые методы определения высоты деревьев. Хотя эти методы не всегда позволяют измерить высоту с точностью до сантиметра (или дюйма), они довольно надежны, и с их помощью можно измерять любые высокие предметы, такие как телеграфные столбы, здания, и даже волшебное дерево, выросшее из бобового зернышка: измерению поддается любой объект, покуда видна его вершина.

Шаги

Использование листа бумаги

    Этот способ позволяет найти высоту дерева, не прибегая к математическим вычислениям. Вам понадобится всего лишь лист бумаги и измерительная рулетка. Не потребуется никаких вычислений; однако, если вы хотите узнать, как работает данный метод, вам потребуется небольшое знакомство с основами тригонометрии.

    • В разделе "Использование клинометра или теодолита" приведены все математические вычисления и пояснения, однако они не обязательны для нахождения высоты дерева данным методом.
  1. Сложите лист бумаги по диагонали так, чтобы получился треугольник. Если лист не квадратный, а прямоугольный, необходимо сделать из него квадрат. Согните лист бумаги по углу, совместив два соседних края и получив таким образом треугольник, после чего отрежьте лишний край, выступающий из-под него. В результате у вас получится необходимый треугольник.

    • Треугольник будет иметь один прямой (90 градусов) угол и два острых угла по 45 градусов.
  2. Поднесите треугольник к одному глазу. Держите лист вертикально, чтобы прямой угол (90º) помещался внизу и был направлен от вас. Одна из коротких сторон (катет) должна располагаться горизонтально (параллельно земле), вторая – вертикально (снизу вверх). Разместите треугольник так, чтобы, подняв глаза кверху, вы могли смотреть вдоль его длинной стороны.

    • Длинная сторона прямоугольного треугольника, вдоль которой направлен ваш взгляд, называется гипотенузой.
  3. Отдаляйтесь от дерева до тех пор, пока не увидите, что его верхушка совпадает с вершиной треугольника (его верхним острым углом). Закройте один глаз, глядя вторым вдоль длинной стороны треугольника, пока над ним не возникнет верхушка дерева. Добейтесь, чтобы ваш взгляд, направленный вдоль длинной стороны треугольника, падал на самую вершину дерева.

    Отметьте соответствующее место на земле и измерьте расстояние от него до основания дерева. Это и будет почти полной высотой дерева. К полученной величине следует прибавить ваш рост, поскольку вы смотрели на дерево не с самой земли, а с высоты ваших глаз. Теперь вы нашли относительно точную высоту дерева!

    • Принцип, на котором основан данный метод, подробно изложен ниже в разделе "Использование клинометра или теодолита". Настоящий метод не требует каких-либо вычислений, поскольку в нем используется тот простой факт, что тангенс угла 45º градусов (именно такие острые углы в нашем треугольнике из бумаги) равен 1. Таким образом, можно записать следующее равенство: (высота дерева) / (расстояние от дерева) = 1. Умножив обе части равенства на (расстояние от дерева), получаем: высота дерева = расстояние от дерева.

Использование карандаша (необходим помощник)

  1. Этот метод можно использовать в качестве альтернативы предыдущему (сравнение теней). Хотя настоящий метод менее точен, его можно использовать в тех случаях, когда невозможно найти высоту дерева посредством сравнения длины теней, например, в пасмурный день. К тому же, если у вас есть измерительная рулетка, вы сможете обойтись без математических вычислений. В противном случае, если вы не найдете рулетку, потребуются некоторые простые вычисления.

    Встаньте достаточно далеко от дерева так, чтобы видеть его целиком, от основания до вершины, не наклоняя и не подымая при этом голову. Для большей точности измерений ваши ступни должны быть вровень с основанием дерева, не выше и не ниже его. Встаньте так, чтобы ничто не перекрывало и не загораживало от вас дерево.

    Возьмите в руку карандаш и вытяните его перед собой. Вместо карандаша можно использовать другой небольшой прямой предмет, например, палочку либо линейку. Взяв карандаш в руку, выпрямите ее таким образом, чтобы карандаш находился прямо перед вами (между вами и деревом).

    Закройте один глаз и пошевелите карандашом, добившись того, чтобы его верхушка совместилась с вершиной дерева. При этом лучше держать карандаш заточенным концом кверху. Необходимо, чтобы верхний край карандаша заслонил от вас вершину дерева, в то время как вы смотрите на дерево “сквозь” карандаш.

    Подвигайте большим пальцем вдоль карандаша, добившись того, чтобы кончик пальца совпал с основанием дерева. Держа карандаш так, чтобы его верхний конец был совмещен с вершиной дерева (смотрите шаг 3), переместите большой палец вдоль карандаша в то место, где видно основание дерева, выходящее из земли (как и ранее, глядя при этом одним глазом “сквозь” карандаш на дерево). Теперь карандаш "закрывает" полную высоту дерева, от его основания до вершины.

    Поверните руку так, чтобы карандаш расположился горизонтально (вдоль земной поверхности). При этом держите руку вытянутой перед собой и следите, чтобы большой палец по-прежнему указывал на основание дерева.

    Попросите своего помощника встать так, чтобы вы могли видеть его или ее “на” кончике карандаша. То есть ваш друг должен встать таким образом, чтобы его ступни “совпали” с верхушкой карандаша. При этом помощнику следует расположиться на том же расстоянии от вас, что и дерево, не ближе и не дальше. Вы и ваш помощник будете удалены друг от друга на некоторое расстояние (зависящее от высоты дерева), поэтому можете общаться с ним посредством жестов (пользуясь второй рукой, в которой нет карандаша), показывая, куда ему двигаться (дальше или ближе, вправо или влево).

    Если у вас есть при себе рулетка, измерьте расстояние между вашим помощником и деревом. Попросите друга оставаться на месте, либо отметьте это место веткой или камешком. Затем измерьте рулеткой расстояние от этого места до основания дерева. Это расстояние будет равняться высоте дерева.

    Если у вас нет под рукой измерительной рулетки, отметьте на карандаше высоту вашего помощника и высоту дерева. Нанесите царапину либо другую отметку на карандаш в том месте, где располагался ваш большой палец, зафиксировав тем самым высоту дерева с занятой вами точки обзора. Затем так же, как ранее с деревом, переместите карандаш таким образом, чтобы он частично заслонил вашего помощника, совместив верхушку карандаша с головой помощника, а лежащий на карандаше большой палец – с его ступнями. Вновь отметьте положение большого пальца на карандаше.

  2. Рассчитайте высоту дерева, найдя измерительную рулетку. Для этого потребуется измерить расстояние между кончиком карандаша и сделанными на нем отметками, а также рост вашего помощника; это можно проделать и дома, не возвращаясь к дереву. Отмасштабируйте отрезки на карандаше в соответствии с ростом вашего помощника. Например, если отметка, означающая рост вашего друга, отстоит от кончика карандаша на 5 сантиметров (2 дюйма), а отметка, соответствующая высоте дерева – на 17,5 сантиметров (7 дюймов), тогда дерево в 3,5 раза выше вашего помощника, поскольку 17,5 см / 5 см = 3,5 (7 дюймов / 2 дюйма = 3,5). Допустим, рост вашего друга составляет 180 сантиметров (6 футов), тогда высота дерева равна 180 см x 3,5 = 630 см (6 x 3,5 = 21 футов).

    • Примечание : если у вас есть при себе измерительная рулетка, когда вы находитесь возле дерева, нет необходимости производить какие-либо вычисления. Прочитайте внимательно приведенный выше шаг "если у вас есть при себе рулетка".

Использование клинометра или теодолита

  1. Данный метод позволяет получить более точные результаты. Хотя приведенные выше методы довольно надежны, при помощи немного более развернутых вычислений и специальных инструментов можно получить более точные результаты. Это не так сложно, как кажется на первый взгляд: понадобится лишь калькулятор с функцией вычисления тангенса, а также простой пластмассовый транспортир, соломинка и нить, при помощи которых вы сможете сделать клинометр самостоятельно. Клинометр, или уклономер, позволяет позволяет измерять наклон объектов, а в нашем случае – угол между вами и вершиной дерева. С этой целью используют и более сложный и точный инструмент, называемый теодолитом, в конструкцию которого входит телескоп либо лазер.

    • В методе “Использование листа бумаги” в качестве клинометра выступает бумажный треугольник. Настоящий метод, помимо большей точности, позволяет определить высоту дерева с любого расстояния вместо того, чтобы подходить к дереву или удаляться от него, добиваясь совмещения листа бумаги с деревом.
  2. Измерьте расстояние до точки наблюдения. Встаньте спиной к дереву и отойдите от него на место, находящееся вровень с его основанием, откуда хорошо видна вершина дерева. При этом идите вдоль прямой линии, измеряя рулеткой расстояние, пройденное от дерева. Расстояние от дерева может быть произвольным, однако для данного метода лучше всего, если оно составит 1-1,5 высоты дерева.

    Теперь вы знаете высоту дерева. Поскольку клинометр или теодолит располагался не на земле, а на уровне ваших глаз, для нахождения полной высоты дерева к вычисленной ранее величине следует прибавить ваш рост. Для получения более точных результатов можете измерить расстояние от своих ступней до глаз и прибавить его, а не полный рост от ступней до макушки.

    • Если вы пользуетесь стационарным теодолитом, следует прибавить не ваш рост, а расстояние от окуляра теодолита до земли.
  • Многие деревья не растут строго вертикально, их стволы бывают наклонены. Используя метод угла подъема, вы можете приспособить его к наклонным деревьям, измеряя расстояние между вами и точкой на земле, находящейся строго под вершиной дерева (а не между вами и основанием дерева).
  • Вы можете повысить точность расчетов метода карандаша и метода угла подъема, если сделаете несколько замеров с разных точек вокруг дерева.
  • Это может быть веселым занятием для школьников с 4 по 7 классы.
  • Для более точных расчетов при использовании метода тени вместо роста человека вы можете взять что-то, длину чего вы точно знаете (например, метровую линейку либо другой прямой длинный предмет).
  • Будьте внимательны с единицами измерения (умножайте метры на метры или сантиметры на сантиметры).
  • Вы можете легко сделать простейший клинометр с помощью транспортира. Инструкции вы найдете в этой статье .

Предупреждения

  • Перечисленные методы не работают, если дерево растет на склоне. В таких случаях специалисты используют электронные теодолиты, которые, как правило, довольно дороги.
  • Хотя методы угла подъема при правильном использовании дадут вам результат с точностью до полуметра либо метра, в них можно легко ошибиться, особенно если дерево наклонено или растет на склоне. Если вам необходима высокая точность, обратитесь к услугам автовышки.

Определить скрытые повреждения авто можно посредством оценки толщины краски. Наверняка многие видели в руках перекупщиков специальные приборы, при помощи которых они определяют целая машина или «битая». Эти приборы называются толщиномерами. Поговорим про их основные виды и методы определения толщины лакокрасочного покрытия машины.

Не обязательно быть профессиональным перекупщиком, чтоб освоить применение толщиномеров. Их использование оправданно даже если решили купить б/у автомобиль для себя. В силу этого хотелось бы подробнее поговорить об основных разновидностях и методике работы с ними. Для начала раскроем тему каким образом с помощью толщиномера можно определить была ли машина "битая" либо нет.

Дело в том, что толщина заводского слоя краски на всех кузовных деталях автомобилей, как правило, колеблется от 70 до 180 мкм. Если показания прибора находятся в этих пределах, значит та либо иная деталь не перекрашивалась. Если машина побывала в ДТП, но была восстановлена, то сделать это невозможно без нанесения слоя шпаклёвки. Это в значительной степени увеличивает толщину лакокрасочного покрытия.

Если прибор показывает, что общая толщина покрытия превышает 200-250 мкм, это служит сигналом, что данный автомобиль побывал в аварии. Или если в одном или нескольких местах толщина значительно превышает, чем в других - значит присутствует слой ремонтной шпаклёвки.

Виды толщиномеров, какие из них наиболее практичны

Существует много видов толщиномеров, работа которых основана на различных принципах, но для оценки толщины лакокрасочного покрытия автомобилей пригодны три типа: электромагнитные, вихретоковые и ультразвуковые. Каждый из них имеет как достоинства, так и недостатки, в силу чего о них следует рассказать по отдельности.

Электромагнитные толщиномеры являются практичными и надёжными приборами, основным достоинством которых можно считать высокую точность измерений. К их недостаткам можно отнести тот факт, что измерения доступны лишь для железосодержащих поверхностей. Любые цветные металлы либо пластик таким толщиномерам не по зубам.

Вихретоковые толщиномеры справляются с измерениями толщины покрытия на любых металлах. Они лучше всего работают с материалами, которые обладают повышенной токопроводимостью и это является их основным недостатком. Данные приборы обладают отличной точностью измерения для поверхностей из таких металлов как, например, алюминий, но для железа этот параметр оставляет желать лучшего.

Ультразвуковые толщиномеры - наиболее универсальные. С их помощью можно проводить измерения толщины слоя краски не только на металлических поверхностях, но также на пластике, композитных материалах, керамике. Они с высокой точностью измеряют толщину покрытия не только на кузовных деталях автомобиля, но и на пластиковых бамперах, карбоновых вставках и прочих декоративных элементах.

Ультразвуковые приборы лучше всего подходят для профессиональной деятельности и основным их недостатком можно считать относительно высокую стоимость. Поэтому существуют сервисы, где можно взять толщиномер в аренду на несколько дней/сутки, что будет выгоднее.

Как правильно пользоваться?

В заключении коротко опишем метод применения толщиномера для оценки состояния кузова автомобиля. Он сводится к следующим действиям: прикладывая контрольную часть прибора к каждой кузовной детали необходимо следить за показаниями индикатора. Начинать измерения следует с одного из передних крыльев, последовательно обходя вокруг машины.

Каждую из деталей следует измерить минимум в 4-х точках, при этом уделяя особенное внимание вертикальным стойкам и крыше. Например, измерили переднее крыло - прибор показал 180, переднюю дверь - 140, заднюю дверь - 690, заднее крыло - от 150 до 600. Значит - удар был в заднюю дверь и крыло. Очень большое значение на стойках и крыше - говорит о серьёзном ремонте машины, нужна более тщательная проверка.

Видео - пример измерения

Если показания прибора в каком либо месте превышают заводскую норму, необходимо увеличить число контрольных точек. Это позволит выявить площадь повреждения и его тяжесть, которая прямо пропорциональна слою нанесённой шпаклёвки.

3. Фронтальный опрос

– Ребята, с какими понятиями мы познакомились на прошлом уроке?
– Дома нужно было начертить в тетради таблицу, в которой необходимо распределить по колонкам (физическое тело, вещество, явление) следующие слова: свинец, гром, рельсы, пурга, алюминий, рассвет, буран, Луна, спирт, ножницы, ртуть, снегопад, стол, медь, вертолет, нефть, кипение, метель, выстрел, наводнение.

Заполнение таблицы проверяется устно.

А тем временем один ученик оформляют на доске решение задания по переводу единиц измерения.
После дети сами оценивают правильность выполненного задания.
Самых активных учеников, которые комментировали и отвечали уверенно, правильно и аргументировано, необходимо оценить.
– Третье задание было творческое: подобрать загадки о физических телах, явлениях, веществах.
– Поиграем в игру «Цепочка». Условие игры заключается в следующем: я загадаю вам загадку, а вы не только должны отгадать ее, но и определить: тело, вещество или явление. Кто отгадает, тот зачитывает свою. Кто отгадает загадку одноклассника, тот предлагает свою и т. д. по цепочке. И последнее условие: загадки не повторяются.

Загадка:

Чудо – птица, алый хвост
Полетела в стаю звезд.

– Молодцы!
Оценивание результатов выполнения домашнего задания.
Выставляются отметки в журнал.
Приветствуется оформление творческого задания в виде ребусов, кроссвордов, рисунков.

4. Изучение нового материала

– Ребята, как вы думаете, сколько нам понадобилось времени для проверки домашнего задания?
– А приходилось ли вам в повседневной жизни еще делать измерения? Какие?
– Все эти перечисленные примеры – физические величины. Сегодня на уроке мы подробней познакомимся с ними и научимся их измерять.(Слайд 1 ).
– Запишите в тетради дату и тему урока: «Измерение – основа техники».
– Какие измерительные приборы вам знакомы? Какие величины с их помощью можно измерить? (Слайд 2 )

– Вы, много знаете физических приборов!
– А умеете ли, вы, с их помощью определять величины?
– Проверим?
– Я разделю вас на группы по 5 человек. И каждая группа экспериментально проверит и подтвердит свои знания.
Класс делю на 5 групп с равным количеством детей, но различными навыками и способностями. Т. к. группы разноуровневые, следовательно, нужно подобрать дифференцированные задания: низкий, средний, высокий уровень. (Приложение 3 )
При выполнении эксперимента напоминаю об основных правилах соблюдения техники безопасности: работа с термометрами, с мелкими предметами и с острыми предметами.
Выступающий учащийся (из каждой группы) оценивается, также учитывается правильность выполнения домашнего задания.
– Молодцы!
– Вы все сейчас доказали, что умеете пользоваться измерительными приборами.
– Скажите, для чего нам нужно знать длину и ширину ладони?
– Зачем нам знать, как определять массу тела?

– Где и когда вы еще измеряли температуру?

– Когда еще мы можем измерить объем тела, с помощью линейки?

– Ребята, подумаете, как можно определить объем воздуха в классной комнате?

– Запишем эту формулу в тетрадь.
– А как определить объем кусочка мела? (Показываю мелок).
– Но нас окружают не только тела с правильной геометрической формой. Например, фарфоровый ролик, игрушка «Kinder-surprise», ложка и т. д.
Все предметы демонстрируются.

– Как определить объем тела неправильной формы? Например, игрушки «Kinder-surprise»?

– Объем маленькой игрушки, измеряем физическим прибором – мензуркой.
– Запишите в тетрадь название этого прибора.
– Как измерять объем тела мензуркой? Для этого в мензурку наливают определенное количество воды. Погружают полностью исследуемое тело в мензурку с водой и замечают, что уровень воды увеличился. Разница показаний объемов воды и будет искомая величина – объем тела.
– Запишите формулу в тетрадь:
V = V 1 – V 2 , где V 1 – объем воды в мензурке, а V 2 – объем воды и погруженного в нее тела.
– Кто определит объем медного цилиндра с помощью мензурки?
Нужно учесть следующее: этот эксперимент виден только близ сидящей аудитории. Поэтому демонстрируется слайд 3 (результат проведенного эксперимента).
– Ребята, что общего у всех измерительных приборов? (Слайд 2. Гиперссылка ).
Далее переходим по гиперссылке на слайд 4. Шкала и ее характеристики.
– Рассмотрим один и тот же по назначению прибор, но с разными шкалами. На стр. 9 учебника рис. 11 и 12.
– Ребята, скажите, одинаковы ли показания термометров.
– А какой термометр показывает большую температуру?
– Для того чтобы точно уметь снимать показания с прибора нужно знать его цену деления.
– Запишите в тетради подзаголовок «Цена деления».
– Цена деления – это наименьшее значение физической величины, которое может измерить прибор.
– Для того чтобы правильно определить цену деления существует правило. (Слайд 5 ) Это же правило находим в учебнике.
Учимся определять цену деления шкалы мензурки. (Слайд 6).
– Запишите формулу для определения цены деления:
С = (a – b) / d. (Слайд 7 ).
Учимся определять цену деления шкалы и измерять показания приборов. (Слайды 8, 9 ).

5. Закрепление изученного материала

– Молодцы!
– Ребята, что нового вы сегодня узнали на уроке?

Оценивание тех детей, кто был активным на уроке, с учетом работы в группе.

6. Домашнее задание

– Запишем домашнее задание в дневниках. (Слайд 10 ).
Раздаю карточки с заданиями двух вариантов. (Приложение 4 )
Отвечаю на вопросы детей, если они возникли при знакомстве с заданиями.
На следующем уроке учащиеся проверяют эту работу друг у друга и выставляют оценку на полях карандашом.
– В оставшееся время мы поиграем в «Пойми меня». (Слайд 11 )
– Условие игры: я задаю наводящие утверждения, а ваша задача – догадаться, о чем идет речь как можно раньше. Если ответ верный, то на экране появится отгадка.
– Какую физическую величину с их помощью можно измерить?
– Где еще применяется этот прибор?

– Вторая загадка. (Слайд 12 ).
– Где и для чего применяется этот прибор?

– Третья загадка: (Слайд 13 ).
– Встречали ли вы этот прибор и где?

Самого смекалистого также необходимо оценить.

– Молодцы, всех благодарю за внимание. Всем большое спасибо. (Слайд 14 ).

На заре развития знаний об электричестве, достаточно было оперировать такими понятиями, как напряжение, сопротивление проводника, сила тока. Соответственно, для измерения этих величин использовались вольтметры, омметры, амперметры.

Современные электроприборы – это высокотехнологичные устройства, которые заключают в своей конструкции множество инженерных решений, в том числе различные электронные модули. Для отладки или ремонта систем, использующих эти модули, необходимо производить измерение множества параметров, связанных с работой устройств, для чего используется множество контрольно-измерительных приборов.

Наиболее простым и доступным прибором, используемым для этих целей, является мультиметр.

Назначение и виды

Назначение прибора угадывается из названия. «Мульти» – приставка в сложных словах, означающая «много». «Метрео» переводится с греческого языка как «измерять». Получается, что мультиметр – это прибор, которым можно измерить много различных параметров. Конечно же, почти все измеряемые параметры, так или иначе, связаны с электричеством.

Мультиметром невозможно измерить, например, артериальное давление человека или влажность воздуха, но используя некоторые модели, можно измерить температуру какого-либо предмета, жидкости или газа.

По конструкции выделяются следующие виды мультиметров:

  1. аналоговые;
  2. цифровые.

Аналоговые, ранее появившиеся в применении, заметно уступают цифровым в точности измерений и количестве измеряемых параметров. Они требуют дополнительной настройки и подготовки, перед тем как производить непосредственно измерение.

В конструкции приборов могут присутствовать элементы, работа которых основана на использовании явления магнетизма.

Точность аналоговых устройств сильно зависит от наличия магнитных полей в зоне измерений, влажности и температуры окружающей среды. Показания на таких устройствах считываются со шкалы, которая является многофункциональной.

Цифровые мультиметры намного проще в эксплуатации, чем аналоговые, они имеют более широкий диапазон выполняемых функций и пределы измерений, но при этом цена их выше. Показания выводятся в виде цифровой информации на жидкокристаллическом дисплее. Очень часто дисплей имеет подсветку для удобства использования мультиметра при недостаточном освещении.

Применение

Бывают случаи, когда человек, являясь профессионалом в какой-либо области, не касающейся электричества, совершенно не знает, зачем нужен мультиметр. Такое возможно потому, что еще недавно, буквально пару десятилетий назад, приборы эти производились только в аналоговом исполнении и были довольно дорогими.

Применялись они, в основном, профессиональными электриками, были громоздкими, иногда требовали применения дополнительного источника питания.

В последнее время мультиметры делают компактными, недорогими, пользоваться ими стало намного проще. Любой рачительный хозяин сейчас обладает хотя бы простейшей моделью из большого семейства этих устройств.

Ведь, если установлена причина неисправности какого-либо прибора домашнего обихода, то устранение ее может оказаться под силу обычному человеку, не обладающему профессиональными знаниями и навыками электрика. При этом нередко, имея под рукой такой полезный измерительный прибор, владелец его не всегда использует все функции мультиметра.

Мультиметр применяется при ремонте электроприборов, отладке схем, электронных устройств. В повседневной жизни он может использоваться при ремонте электрической бытовой техники, электрической части автомобилей, мотоциклов, устранении неисправностей в электрических сетях, при устройстве проводки, ремонте радиоаппаратуры. Область применения очень велика.

Какие параметры измеряет

Как же применяется один и тот же прибор в разных, на первый взгляд, ситуациях?

Все очень просто. В электрических устройствах обязательно существует множество элементов – электродвигатели, радиодетали, переключатели, катушки индуктивности, микросхемы, реле и прочие компоненты. Работа их непременно связана с наличием электричества, которое характеризуется такими параметрами как напряжение и сила тока.

Все типы мультиметров могут применяться при измерении напряжения переменного и постоянного тока, сопротивления проводника или участка цепи, силы тока на участке цепи с включенной нагрузкой.

Цифровой мультиметр, кроме того предоставляет возможность измерения емкости конденсаторов.

С помощью мультиметра можно проверять исправность диодов, транзисторов. Многие модели могут измерять частоту. Некоторые разновидности мультиметров имеют датчики температуры.

При обслуживании бытовой техники применение мультиметра основывается, как правило, на необходимости проверки – есть ток или нет тока. То есть проверяются подводящие кабели и шнуры на предмет обрыва, а также разъемы электрических цепей на наличие контакта. В этом случае мультиметр используется как омметр.

Проверка трансформаторов и электродвигателей

Иногда возникает необходимость проверки входного и выходного напряжения на трансформаторах блоков питания. Для измерения этих параметров необходимо использовать прибор, как вольтметр, произведя соответствующие настройки.

Многие бытовые машины содержат в конструкции электродвигатели, и в случае, когда двигатель не включается, приходится проверять наличие питающего напряжения на клеммах.

Если в питающей цепи неисправностей не выявлено, необходимо проверять исправность ротора, статора двигателя. Для этого можно проверить целостность проводов обмотки и наличие межвиткового замыкания.

Мультиметр при этом используется и как вольтметр, и как омметр.

Проверка реле и электронных схем

Иногда приходится проверять элементы автоматики – реле и электронные блоки. Реле проверяется, как правило, на величину тока открытия, для чего в цепь включается соответствующая нагрузка, и последовательно с ней мультиметр, работающий в режиме амперметра.

В блоках управления проверяется напряжение на соответствующих контактах или сопротивление между определенными парами контактов в соответствии с их функциональным назначением.

Проверяется с помощью мультиметра и работоспособность отдельных элементов электрических схем, например полупроводниковых приборов (транзисторов, тиристоров), конденсаторов.

Для этого детали выпаиваются из плат и вставляются в специальные разъемы на корпусе прибора. Такие функции доступны, как правило, в цифровых мультиметрах.

Применение в мото- и автотехнике

При обслуживании авто- и мототехники (к мототехнике можно отнести и различные садовые машины с двигателями внутреннего сгорания и лодочные моторы и прочую подобную технику) с помощью мультиметра может проверяться исправность генераторов, стартеров, аккумуляторных батарей.

Во всех этих случаях мультиметр используется для получения данных о напряжении и силе тока. Измерения могут проводиться в различных режимах работы проверяемых агрегатов.

В двигателях внутреннего сгорания проверяется система зажигания. Для этого могут прозваниваться свечи, проверяется сопротивление изоляторов. Тестируются катушки зажигания.

При отказе в работе каких-либо систем, в автомобилях проверяется проводка на предмет обрыва или короткого замыкания, двигатели приводов.

При помощи мультиметра можно установить, например, цела ли спираль в лампе накаливания, не вытаскивая лампу из блока фары. Для этого достаточно разъединить разъем питания фары и можно измерить сопротивление лампы, а потом напряжение питания.

В результате можно установить, действительно ли нужно менять лампу или необходимо искать обрыв в цепи. В последних моделях автомобилей это очень актуально, так как для замены лампы порой приходиться разбирать едва ли не всю переднюю облицовку.

Проверка электропроводки

При устройстве новой или ремонте старой проводки всегда появляется необходимость прозвонки кабелей, а также проверки работоспособности электроустановочных изделий, автоматических выключателей. Все эти операции также возможно с успехом осуществить, применив мультиметр.

Правильное использование мультиметра, этого универсального измерительного прибора с множеством функций и возможностей, помогает значительно улучшить условия эксплуатации техники.

Мультиметр помогает своевременно выявить необходимость ее ремонта, увеличивая при этом максимальный срок эксплуатации. Это в конечном итоге позволяет владельцам избежать лишних затрат на ремонт и реновацию.

Термометр – это прибор, предназначенный для измерения температуры жидкостной, газообразной или твердой среды. Изобретателем первого устройства для измерения температуры является Галилео Галилей. Название прибора с греческого языка переводится как «измерять тепло». Первый прототип Галилея существенно отличался от современных. В более привычном виде устройство появилась спустя более чем через 200 лет, когда за изучение данного вопроса взялся шведский физик Цельсий. Он разработал систему измерения температуры, разделив термометр на шкалу от 0 до 100. В честь физика уровень температуры измеряются в градусах Цельсия.

Разновидности по принципу действия

Хотя с момента изобретения первых термометров прошло уже более через 400 лет, эти устройства до сих пор продолжают совершенствоваться. В связи с этим появляются все новые устройства, основанные на ранее не применяемых принципах действия.

Сейчас актуальными являются 7 разновидностей термометров:
  • Жидкостные.
  • Газовые.
  • Механические.
  • Электрические.
  • Термоэлектрические.
  • Волоконно-оптические.
  • Инфракрасные.
Жидкостные

Термометры относятся к самым первым приборам. Они работают на принципе расширения жидкостей при изменении температуры. Когда жидкость нагревается – она расширяется, а когда охлаждается, то сжимается. Само устройство состоит из очень тонкой стеклянной колбы, заполненной жидким веществом. Колба прикладывается к вертикальной шкале, выполненной в виде линейки. Температура измеряемой среды равна делению на шкале, на которое указывает уровень жидкости в колбе. Эти устройства являются очень точными. Их погрешность редко составляет более 0,1 градуса. В различном исполнении жидкостные приборы способны измерять температуру до +600 градусов. Их недостаток в том, что при падении колба может разбиться.

Газовые

Работают точно так же как и жидкостные, только их колбы заполняются инертным газом. Благодаря тому, что в качестве наполнителя используется газ, увеличивается диапазон измерения. Такой термометр может показывать максимальную температуру в пределах от +271 до +1000 градусов. Данные приборы обычно применяются для снятия показания температуры различных горячих веществ.

Механический

Термометр работает по принципу деформации металлической спирали. Такие приборы оснащаются стрелкой. Они внешне немного напоминает стрелочные часы. Подобные устройства используется на панели приборов автомобилей и различной спецтехнике. Главное достоинство механических термометров в их прочности. Они не боятся встряски или ударов, как модели из стекла.

Электрические

Приборы работают по физическому принципу изменения уровня сопротивления проводника при различных температурах. Чем горячее металл, тем его сопротивляемость при передаче электрического тока выше. Диапазон чувствительности электротермометров зависит от металла, который использован в качестве проводника. Для меди он составляет от -50 до +180 градусов. Более дорогие модели на платине могут указывать на температуру от -200 до +750 градусов. Такие приборы применяются как датчики температуры на производстве и в лабораториях.

Термоэлектрический

Термометр имеет в своей конструкции 2 проводника, которые измеряют температуру по физическому принципу, так называемому эффекту Зеебека. Подобные приборы имеют широкий диапазон измерения от -100 до +2500 градусов. Точность термоэлектрических устройств составляет около 0,01 градуса. Их можно встретить в промышленном производстве, когда требуется измерение высоких температур свыше 1000 градусов.

Волоконно-оптические

Делаются из оптоволокна. Это очень чувствительные датчики, которые могут измерять температуру до +400 градусов. При этом их погрешность не превышает 0,1 градуса. В основе такого термометра лежит натянутое оптоволокно, которое при изменении температуры растягивается или сжимается. Проходящий сквозь него луч света преломляется, что фиксирует оптический датчик, сопоставляющий преломление с температурой окружающей среды.

Инфракрасный

Термометр, или пирометр, является одним из самых недавних изобретений. Они имеют верхний диапазон измерения от +100 до +3000 градусов. В отличие от предыдущих разновидности термометров, они снимают показания без непосредственного контакта с измеряемым веществом. Прибор посылает инфракрасный луч на измеряемую поверхность, и на небольшом экране отображает ее температуру. При этом точность может отличаться на несколько градусов. Подобные устройства применяются для измерения уровня нагрева металлических заготовок, которые находятся в горне, корпуса двигателя и пр. Инфракрасные термометры способны показать температуры открытого пламени. Подобные устройства применяются еще в десятках различных сфер.

Разновидности по предназначению
Термометры можно классифицировать на несколько групп:
  • Медицинские.
  • Бытовые для воздуха.
  • Кухонные.
  • Промышленные.
Медицинский термометр

Медицинские термометры обычно называют градусники. Они имеют низкий диапазон измерения. Это связано с тем, что температура тела живого человека не может составлять ниже +29,5 и выше +42 градусов.

В зависимости от исполнения медицинские градусники бывают:
  • Стеклянные.
  • Цифровые.
  • Соска.
  • Кнопка.
  • Инфракрасный ушной.
  • Инфракрасный лобный.

Стеклянные термометры являются первыми, которые начали применять для медицинских целей. Данные устройства универсальны. Обычно их колбы заполняются спиртом. Раньше для таких целей использовалась ртуть. Подобные устройства имеют один большой недостаток, а именно необходимости длительного ожидания для отображения реальной температуры тела. При подмышечном исполнении продолжительность ожидания составляет не менее 5 минут.

Цифровые термометры имеют небольшой экран, на который выводится температура тела. Они способны показать точные данные спустя 30-60 секунд с момента начала измерения. Когда градусник получает конечную температуру, он создает звуковой сигнал, после которого его можно снимать. Данные приборы могут работать с погрешностью, если не очень плотно прилегают к телу. Существуют дешевые модели электронных термометров, которые снимают показания не менее долго, чем стеклянные. При этом они не создают звуковой сигнал об окончании измерения.

Термометры соски сделаны специально для маленьких детей. Устройство представляет собой соску-пустышку, которая вставляется в рот младенца. Обычно такие модели после завершения измерения подают музыкальный сигнал. Точность устройств составляет 0,1 градуса. В том случае если малыш начинает дышать через рот или плакать, отклонение от реальной температуры может быть существенным. Продолжительность измерения составляет 3-5 минут.

Термометры кнопки применяются тоже для детей возрастом до трех лет. По форме такие приборы напоминают канцелярскую кнопку, которая размещается ректально. Данные устройства снимают показания быстро, но имеют низкую точность.

Инфракрасный ушной термометр считывает температуру из барабанной перепонки. Такое устройство способно снять измерения всего за 2-4 секунды. Оно также оснащается цифровым дисплеем и работает на . Данное устройство имеет подсветку для облегчения введения в ушной проход. Приборы подходят для измерения температуры у детей старше 3 лет и взрослых, поскольку у младенцев слишком тонкий ушной канал, в который наконечник термометра не проходит.

Инфракрасные лобные термометры просто прикладываются ко лбу. Они работают по такому же принципу, как и ушные. Одно из преимуществ таких устройств в том, что они могут действовать и бесконтактно на расстоянии 2,5 см от кожи. Таким образом, с их помощью можно измерить температуру тела ребенка не разбудив его. Скорость работы лобных термометров составляет несколько секунд.

Бытовые для воздуха

Для измерения температуры воздуха на улице или в помещении применяются бытовые термометры. Они, как правило, выполнены в стеклянном варианте и заполнены спиртом или ртутью. Обычно диапазон их измерения в уличном исполнении составляет от -50 до +50 градусов, а в комнатном от 0 до +50 градусов. Подобные приборы часто можно встретить в виде украшений для интерьера или магнита на холодильник.

Кухонные

Кухонные термометры предназначены для измерения температуры различных блюд и ингредиентов. Они могут быть механическими, электрическими или жидкостными. Их применяют в тех случаях, когда необходимо строго контролировать температуру по рецепту, к примеру, при приготовлении карамели. Обычно подобные устройства идут в комплекте с герметичным тубусом для хранения.

Промышленные

Промышленные термометры предназначены для измерения температуры в различных системах. Обычно они представляют собой приборы механического типа со стрелкой. Их можно увидеть в магистралях водяного и газового снабжения. Промышленные модели бывают электрические, инфракрасные, механические и пр. Они имеют самое большое разнообразие форм, размеров и диапазонов измерения.