Какой буквой обозначается физическая величина количество теплоты. Какой буквой обозначается количество теплоты

1. кАкое количество теплоты потребуеться чтобы расплавить олово массой 240г, взятого при температуре плавления? 2. Сколько надо сжечь керосина, чтобы пр

и этом выделилась теплота, равная 10МДж? 3. Сколько теплоты необходимо для обращения в пар эфира массой 250г при температуре 35С? 4. Какое количество энергии потребуеться для нагревания и плавления свинца массой 0,4 кг имеющего начальную температуру 17С? 5. К зиме заготовили сухие сосновые дрова объёмом 2м и каменный уголь массой 1,5 т. Сколько теплоты выделиться в печи при полном сгорании этого топлива? 6. Рассчитайте количество теплоты которое потребуеться для обращения в пар спирта массой 200г. нахордящегося при температуре 28С? 7. Какая установиться окончательная температура, если лёд массой 500г при температуре 0С погрузить в воду объёмом 4л при температуре 30С? 8. Сколько сосновых дров нужно израсходывать, чтобы снег массой 1500кг, взятый при температуре -10С, обратить в воду с тепературой 5С? Тепловыми потерями можно пренебречь

Уровень I 1. Какое количество теплоты выделит за 10 мин проволочная спираль сопротивлением 40 Ом, если сила тока в ней 1

2. При напряжении 450 В сила тока в электродвигателе 90 А. Определите мощность тока в обмотке электродвигателя и его сопротивление.

3. Каков расход энергии за 40 с в автомобильной электрической лампочке, рассчитанной на напряжение 12 В при силе тока 3 А?

Уровень II

4. За какое время электрический утюг выделит количество теплоты 800 Дж, если сила тока в спирали 3 А, а напряжение в сети 220 В?

5. Определите мощность, потребляемую второй лампой (рис. 126), если показания вольтметра 6 В.

6. Определите мощность электрического чайника, если за 5 мин в нем 1 кг воды нагреется от 20 до 80 °С. Потерями энергии пренебречь.

Контрольная работа № 4. Работа и мощность тока.

Вариант 3

Уровень I

1. Какую работу совершит ток в электродвигателе за 90 с, если при напряжении 220 В сила тока в обмотке двигателя равна 0,2 А?

2. Определите мощность тока в электрической лампочке, если при напряжении 5 В сила тока в ней 100 мА.

3. Какое количество теплоты выделится в реостате сопротивлением 50 Ом за 2 мин при силе тока в цепи 2 А?

Уровень II

4. На сколько градусов за 5 мин можно нагреть на электроплитке 1,5 кг воды, если при напряжении 220 В сила тока в ней 5 А? Потерями энергии пренебречь.

5. Определите мощность, потребляемую первой лампой (рис. 127), если показания амперметра 2 А.

6. За какое время можно с помощью электрического кипятильника мощностью 500 Вт нагреть 500 г воды в стакане от 20 ос до кипения?

1)какое количество теплоты необходимо для нагревания куска льда массой 3 кг от -8градусов до +10градусов как вы нашли сколько теплоты

неообходимо напишите

2)какие количества теплоты необходимо для превращения жидкости 1кг алюминия и 1 кг меди имеющих температуру плаванья?

кирпичного камина массой 2 т от 50 до 20ºС. 3. Рассчитай количество теплоты, необходимое для нагревания железной кастрюли массой 500 г с 2,5 кг подсолнечного масла от 20 до 150ºС. 4. До какой температуры можно нагреть 3 кг свинца, если передать ему количество теплоты равное 50 кДж и его начальная температура равна 10ºС. 5. Чему равна теплоемкость металла, если для нагревания 3 кг этого металла от 50 до 300ºС было затрачено 690 кДж тепловой энергии. Сделай предположение о названии этого металла. Решить все задачи

L 2 MT −2 Θ −1

Единицы измерения СИ

Теплоёмкость тела (обычно обозначается латинской буквой C ) - физическая величина , определяющая отношение бесконечно малого количества теплоты δQ , полученного телом, к соответствующему приращению его температуры δT :

Единица измерения теплоёмкости в системе СИ - Дж / .

Удельная теплоёмкость

Удельной теплоёмкостью называется теплоёмкость, отнесённая к единичному количеству вещества. Количество вещества может быть измерено в килограммах, кубических метрах и молях. В зависимости от того, к какой количественной единице относится теплоёмкость, различают массовую, объёмную и молярную теплоёмкость.

Массовая теплоёмкость (С массы вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на килограмм на кельвин (Дж·кг −1 ·К −1).

Объёмная теплоёмкость (С′ ) - это количество теплоты, которое необходимо подвести к единице объёма вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на кубический метр на кельвин (Дж·м −3 ·К −1).

Молярная теплоёмкость (С μ ) - это количество теплоты, которое необходимо подвести к 1 молю вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на моль на кельвин (Дж/(моль·К)).

Теплоёмкость для различных состояний вещества

Понятие теплоёмкости определено как для веществ в различных агрегатных состояниях (твёрдых тел , жидкостей , газов), так и для ансамблей частиц и квазичастиц (в физике металлов, например, говорят о теплоёмкости электронного газа).

А при постоянном давлении

Удельные теплоёмкости многих веществ приведены в справочниках обычно для процесса при постоянном давлении. К примеру, удельная теплоёмкость жидкой воды при нормальных условиях - 4200 Дж/(кг·К); льда - 2100 Дж/(кг·К).

Теория теплоёмкости


Сравнение моделей Дебая и Эйнштейна для теплоёмкости твёрдого тела

Существует несколько теорий теплоёмкости твердого тела:

Теплоёмкость системы невзаимодействующих частиц (например, газа) определяется числом степеней свободы частиц.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Теплоёмкость" в других словарях:

    теплоёмкость - теплоёмкость, и … Русский орфографический словарь

    теплоёмкость - теплоёмкость … Словарь употребления буквы Ё

    Количество теплоты, поглощаемой телом при нагревании на 1 градус (1°С или 1К); точнее отношение кол ва теплоты, поглощаемой телом при бесконечно малом изменении его темп ры, к этому изменению. Т. ед. массы в ва (г, кг) наз. удельной Т., 1 моля в… … Физическая энциклопедия

    Теплоёмкость, теплоёмкости, теплоёмкости, теплоёмкостей, теплоёмкости, теплоёмкостям, теплоёмкость, теплоёмкости, теплоёмкостью, теплоёмкостями, теплоёмкости, теплоёмкостях (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») … Формы слов

    ТЕПЛОЁМКОСТЬ - физ. величина, характеризующая тепловые свойства тела и равная отношению количества теплоты, полученного телом при бесконечно малом изменении его состояния в каком либо процессе, к вызванному им изменению температуры, т. е. теплоёмкость С = d Q/d … Большая политехническая энциклопедия

    ТЕПЛОЁМКОСТЬ, теплоёмкости, мн. нет, жен. (физ.). Количество тепла, необходимое для того, чтобы нагреть данное тело на 1°. Удельная теплоёмкость (количество тепла, необходимое для того, чтоб нагреть 1 г на 1°). Толковый словарь Ушакова. Д.Н.… … Толковый словарь Ушакова

    И; ж. Физ. Количество теплоты, поглощаемой телом при нагревании на 1 градус (по Цельсию) или отдаваемой при остывании на 1 градус (по Цельсию). Т. металла, пластмассы. Удельная т. (количество теплоты, потребное для нагревания 1 грамма вещества на … Энциклопедический словарь

    ТЕПЛОЁМКОСТЬ, и, жен. (спец.). Количество теплоты (во 2 знач.), необходимое для нагревания данного тела на 1°. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Горных пород (a. heat capacity of rocks; н. Warmekapazitat der Gesteine; ф. capacite calorifique des roches; и. capacidad termica de rocas) свойство г. п. аккумулировать тепло. Удельной Т. С наз. кол во энергии, необходимое для повышения… … Геологическая энциклопедия

Как вы думаете, от чего зависит скорость растворения сахара в воде? Можете провести простой эксперимент. Возьмите два куска сахара и киньте один в стакан с кипятком, другой – в стакан с холодной водой.

Вы увидите, как сахар в кипятке растворится в несколько раз быстрее, чем в холодной воде. Причиной растворения является диффузия . Значит, диффузия происходит быстрее при более высокой температуре. А причина диффузии – это движение молекул. Следовательно, мы делаем вывод, что молекулы при более высокой температуре движутся быстрее. То есть, скорость их движения зависит от температуры. Именно поэтому беспорядочное хаотическое движение молекул, из которых состоят тела, называют тепловым движением.

Тепловое движение молекул

При повышении температуры усиливается тепловое движение молекул, меняются свойства вещества. Твердое тело тает, превращаясь в жидкость, жидкость испаряется, переходя в газообразное состояние. Соответственно, если температуру понижать, то будет уменьшаться и средняя энергия теплового движения молекул, а соответственно, процессы изменения агрегатного состояния тел будут происходить в обратном направлении: вода будет конденсироваться в жидкость, жидкость будет замерзать, переходя в твердое состояние. При этом, мы всегда говорим о средних значениях температуры и скорости молекул, так как всегда присутствуют частицы с большими и меньшими значениями этих величин.

Молекулы в веществах движутся, проходя определенное расстояние, следовательно, совершают некую работу. То есть, мы можем говорить о кинетической энергии частиц. Вследствие их взаимного расположения существует также и потенциальная энергия молекул. Когда идет речь о кинетической и потенциальной энергии тел, то мы говорим о существовании полной механической энергии тел. Если кинетической и потенциальной энергией обладают частицы тела, следовательно, можно говорить о сумме этих энергии, как о самостоятельной величине.

Внутренняя энергия тела

Рассмотрим пример. Если мы кидаем упругий мячик об пол, то кинетическая энергия его движения полностью переходит в потенциальную в момент касания пола, а потом вновь переходит в кинетическую, когда он отскакивает. Если же мы бросим тяжелый железный мячик на твердую неупругую поверхность, то мячик приземлится, не отскакивая. Его кинетическая и потенциальная энергии после приземления будут равны нулю. Куда же подевалась энергия? Она просто исчезла? Если мы изучим шарик и поверхность после столкновения, то увидим, что шарик немного сплющился, на поверхности осталась вмятина, и оба они слегка нагрелись. То есть произошло изменение в расположении молекул тел, а также увеличилась температура. Это означает, что изменились кинетическая и потенциальная энергия частиц тела. Энергия тела никуда не пропала , она перешла во внутреннюю энергию тела. Внутренней энергией называют кинетическую и потенциальную энергию всех частиц тела. Столкновение тел вызвало изменение внутренней энергии, она увеличилась, а механическая энергия уменьшилась. В этом и состоит закон сохранения энергии . Энергия не возникает из ниоткуда и не исчезает в никуда. Она только переходит из одного состояния в другое.

Способы изменения внутренней энергии

Как изменить механическую энергию тела? Да очень просто. Поменять его местоположение или придать ему ускорение. Например, пнуть мячик или поднять его над землей повыше.

В первом случае мы изменим его кинетическую энергию, во втором потенциальную. А как обстоит дело с внутренней энергией? Каким способом изменить внутреннюю энергию тела? Для начала разберемся, что же это такое. Внутренняя энергия – это кинетическая и потенциальная энергия всех частиц, из которых состоит тело. В частности, кинетическая энергия частиц – это энергия их движения. А скорость их движения, как известно, зависит от температуры. То есть, логичный вывод – повышая температуру тела, мы повысим его внутреннюю энергию. Самый простой способ повысить температуру тела – это теплообмен. При контакте тел с разной температурой более холодное тело нагревается за счет более теплого. Более теплое тело в этом случае охлаждается.

Простой ежедневный пример: холодная ложка в чашке с горячим чаем очень быстро нагревается, а чай при этом чуть-чуть остывает. Повышение температуры тела возможно и другими способами. Как мы все поступаем, когда у нас на улице замерзают лицо или руки? Мы трем их. При трении предметы нагреваются. Также предметы нагреваются при ударах, давлении, то есть, иными словами, при взаимодействии. Всем известно, как добывали огонь в древности – либо терли деревяшки друг о друга, либо стукали кремнием по другому камню. Также и в наше время в кремниевых зажигалках используется трение металлического стержня о кремень.

До сих пор речь шла о изменении внутренней энергии путем изменения кинетической энергии составляющих его частиц. А как насчет потенциальной энергии этих же самых частиц? Как известно, потенциальная энергия частиц – это энергия их взаиморасположения. Таким образом, для изменения потенциальной энергии частиц тела, нам надо тело деформировать: сжать, скрутить и так далее, то есть, изменить расположение частиц друг относительно друга. Это достигается путем воздействия на тело. Мы меняем скорость отдельных частей тела, то есть совершаем над ним работу.

Примеры изменения внутренней энергии

Таким образом, все случаи воздействия на тело с целью изменения его внутренней энергии достигаются двумя способами. Либо путем передачи ему тепла, то есть теплопередачей, либо путем изменения скорости его частиц, то есть совершением над телом работы.

Примеры изменения внутренней энергии – это практически все происходящие в мире процессы. Не меняется внутренняя энергия частиц в случае, когда с телом абсолютно ничего не происходит, что согласитесь, крайняя редкость - закон сохранения энергии действует. Вокруг нас все время что-то происходит. Даже с предметами, с которыми на первый взгляд ничего не происходит, на самом деле происходят различные незаметные нам изменения: незначительные изменения температуры, небольшие деформации и так далее. Стул прогибается под нашей тяжестью, у книги на полке чуть-чуть изменяется температуру от каждого движения воздуха, не говоря уже про сквозняки. Ну а что касается живых тел – тут понятно без слов, что в них внутри все время что-то происходит, и внутренняя энергия меняется практически в каждый момент времени.

Теплопроводность

Суть теплопроводности

Теплопроводность происходит из-за движения тепла и взаимодействия его составляющих частиц друг с другом. Процесс теплопроводности приводит к тому, чтобы температура всего тела была одинакова.

Как правило энергия, которая подлежит переносу, определяется в качестве плотности теплового потока, пропорциональному градиенту температуры. Такой коэффициент пропорциональности называется коэффициентом теплопроводности.

Теплопроводность это свойство тел передавать тепло, основанное на теплообмене которое происходит между атомами и молекулами тела.

При теплопроводности не происходит перенос вещества от одного конца тела к другому. У жидкостей теплопроводность небольшая, исключение состовляет ртуть и расплавленные металлы.

Все это из-за того что молекулы расположены далеко друг от друга в отличии от твердых тел. У газов теплопроводность еще меньше т.к. его молекулы находятся на еще большем расстоянии, чем у жидкостей.

Плохой теплопроводностью обладает шерсть, волосы, бумага. Это связано с тем, что между волокнами этих веществ воздух. Теплопроводность у разных веществ различна

Дома строят из кирпича и бревен, потому что они обладают плохой теплопроводностью и могут сохранить прохладу или тепло в помещении. Для сковородок делают пластмассовые ручки для того, чтобы люди не обжигались, потому что они обладают плохой теплопроводностью.

Суть конвекции

Конвекция - еще один вид теплопередачи, при которой энергия переноситься самими струями жидкостей и газа.

Пример: в отапливаемой комнате из за конвенции теплый воздух поднимается вверх, а холодный опускается вниз.

Существует два вида конвекции - естественная и вынужденная.

К естественной конвекции относится нагревание помещения, нагревание тела во время жары (естественным путем).

К вынужденной конвекции относится мешание чая ложкой, использование вентилятора, что бы охладить помещение (неестественным путем)

Конвекция не происходит если нагревать жидкости сверху (правильно снизу), потому что нагретые слои не могут опуститься ниже холодных т.к. они более тяжелее.

Конвекция в твердых телах происходить не может, потому что частицы в твердых телах колеблются возле определенной точки и удерживаются сильным взаимным притяжением. Энергия в твердых телах может передаваться теплопроводностью.

Сущность излучения

Излучение - это один из видов теплопередачи.

Например, с помощью излучения наша планета Земля получает большую часть тепла. Земля находится от Солнца на расстоянии примерно равном 15*10^7 км. Все это пространство за пределами атмосферы Земли содержит очень разреженное вещество. Поэтому тепло не может передаваться за счет теплопроводности или конвекции .

Излучение опытным путем

Рассмотрим этот способ передачи энергии подробнее, на конкретном примере.

Электризация тел: два рода зарядов

Развлекались ли вы в детстве таким нехитрым фокусом: если потереть о сухие волосы надутый воздушный шарик, а потом приложить его к потолку, то он как бы «прилипает»?

Нет? Попробуйте, это забавно. Не менее забавно потом торчат во все стороны волосы. Такой же эффект получается иногда при расчесывании длинных волос. Они торчат и липнут к расческе. Ну и всем знакомы ситуации, когда походив в шерстяных или синтетических вещах, прикасаешься к чему-то или к кому-то и чувствуешь резкий укол. В таких случаях говорят – бьешься током. Все это примеры электризации тел. Но откуда возникает электризация, если мы все прекрасно знаем, что электрический ток живет в розетках и батарейках, а не в волосах и одежде?

Явление электризации тел: способы электризации

Явление электризации тел начинают изучать в восьмом классе. И начинают изучение с рассмотрения электризации тел при соприкосновении. Для этого на уроках проводят опыты с применением простейших способов электризации тел трением эбонитовой или стеклянной палочки о мех или шелк. Вы можете проделать такие опыты самостоятельно, вместо палочки можно взять пластмассовую ручку или линейку. Потрите ручку о шерсть или мех, а затем поднесите к мелко нарезанным кусочкам бумаги, соломинкам или шерстинкам. Вы увидите, как эти кусочки притягиваются к ручке. То же произойдет с тонкой струей воды, если поднести к ней наэлектризованную ручку.

Два рода электрических зарядов

Впервые подобные эффекты были обнаружены с янтарем , потому и были названы электрическими от греческого слова «электрон» – янтарь. И способности тел притягивать другие предметы после соприкосновения, а натирание – это лишь способ увеличить площадь соприкосновения, назвали электризацией или приданием телу электрического заряда. Опытным путем установили, что существует два рода электрических зарядов. Если натереть стеклянную и эбонитовую палочки, то они будут притягиваться между собой. А две одинаковые – отталкиваться. И это происходит не потому, что они не нравятся друг другу, а потому, что у них разные электрические заряды. Электрический заряд стеклянной палочки условились называть положительным, а эбонитовой – отрицательным. Обозначаются они, соответственно, знаками «+» и «-». Опять-таки, эти названия взяты не в смысле того, то один вид заряда хороший, а второй плохой. Имеется в виду, что они противоположны друг другу.

В наше время широко используют легко электризующиеся предметы – пластмассы, синтетические волокна, нефтепродукты. При трении таких веществ возникает электрический заряд, который иногда бывает как минимум неприятен, как максимум он может быть вреден. В промышленности с ними борются специальными средствами. В быту же самый простой способ избавиться от электризации – это смочить наэлектризованную поверхность. Если воды под рукой нет, то поможет прикосновение к металлу или земле. Эти тела снимут электризацию. А чтобы вообще не ощущать на себе эти неприятные эффекты рекомендуется пользоваться антистатиками.

Электрическое поле: деление электрического заряда и электроскоп

Если вы походили в одежде из синтетической ткани, то очень вероятно, что вскоре вы ощутите не очень приятные последствия от такого занятия. Ваше тело наэлектризуется и, здороваясь с другом или дотрагиваясь до дверной ручки, вы ощутите острый укол тока.

Это не смертельно и не опасно, но не очень-то приятно. Каждый хотя бы раз в жизни сталкивался с подобным явлением. Но частенько мы узнаем, что наэлектризовались, уже по последствиям. Можно ли узнать, что тело наэлектризовано каким-нибудь более приятным способом, чем укол тока? Можно.

Для чего нужны электроскоп и электрометр?

Самый простой прибор для определения наэлектризованности – электроскоп. Принцип действия его очень прост. Если дотронуться до электроскопа телом, обладающим каким-либо зарядом, то этот заряд передастся металлическому стержню с лепестками внутри электроскопа. Лепестки приобретут заряд одного знака и разойдутся, отталкиваемые одноименным зарядом друг от друга. По шкале можно будет увидеть размер заряда в кулонах. Есть еще разновидность электроскопа – электрометр. Вместо лепестков на металлическом стержне в нем укреплена стрелка. Но принцип действия тот же – стержень и стрелка заряжаются и отталкиваются друг от друга. Величина отклонения стрелки показывает на шкале уровень заряда.

Деление электрического заряда

Возникает вопрос – если заряд может быть разным, значит, существует какая-то величина наименьшего заряда, который нельзя разделить? Ведь можно же уменьшать заряд. Например, соединив заряженный и незаряженный электроскопы проволокой, мы разделим заряд поровну, что и увидим на обоих шкалах. Разрядив один электроскоп рукой, вновь разделим заряд. И так до тех пор, пока величина заряда не станет меньше минимального деления шкалы электроскопа. Применив приборы для более тонкого измерения, удалось установить, что деление электрического заряда не бесконечно. Величину наименьшего заряда обозначают буквой е и называют элементарным зарядом. e=0,00000000000000000016 Кл=1,6*(10)^(-19) Кл (Кулона). Эта величина в миллиарды раз меньше величины заряда, который мы получаем, наэлектризовав волосы расческой.

Сущность электрического поля

Еще один вопрос, который возникает при изучении явления электризации, заключается в следующем. Чтобы передать заряд, нам надо прикоснуться непосредственно наэлектризованным телом к другому телу, но чтобы заряд подействовал на другое тело, непосредственный контакт не нужен. Так, наэлектризованная стеклянная палочка притягивает к себе кусочки бумаги на расстоянии, не дотрагиваясь до них. Может, это притяжение передается по воздуху? Но опыты показывают, что в безвоздушном пространстве эффект притяжения остается. Что же это тогда?

Это явление объясняют существованием вокруг заряженных тел определенного вида материи – электрического поля. Электрическому полю в курсе физики 8 класса дают следующее определение: электрическое поле – это особый вид материи, отличающейся от вещества, существующий вокруг каждого электрического заряда и способный действовать на другие заряды. Честно говоря, до сих пор нет однозначного ответа, что это такое, и каковы его причины. Все, что мы знаем об электрическом поле и его воздействии, установлено опытным путем. Но наука движется вперед, и хочется верить, что и данный вопрос когда-нибудь разрешится до полной ясности. Тем более, что хотя мы и не до конца понимаем природу существования электрического поля, тем не менее, мы уже довольно неплохо научились использовать это явление на благо человечества.

Электронное строение атома

Мы знаем, что частица, которая является носителем элементарного электрического заряда – это электрон. Передача электронов телами и обусловливает существование и передачу электрического заряда .

При этом электрон заряжен отрицательно. Откуда же тогда берется положительный заряд? Еще мы знаем, что электроны входят в состав атомов. Однако, далеко не все атомы имеют отрицательный заряд. Что компенсирует отрицательный заряд электронов в атоме? И если электрон, входящий в состав атома так легко перемещается, как тогда может оставаться в устойчивости атом, а соответственно и вещество? На эти и другие вопросы дается ответ на уроках по строению атома в восьмом классе в курсе физики. Сейчас мы их разберем.

Электронная модель строения атома

Итак, модель электронного строения атома такова: в центре атома расположено положительно заряженное ядро, вокруг которого движутся отрицательно заряженные электроны. Количество электронов в атомах различных веществ различается. В атоме водорода один электрон, в атоме кислорода – восемь, в атоме железа – двадцать шесть.

Но главное в атоме – это совсем не количество электронов. В атоме главное – это состав ядра. Электроны могут покидать атом, и тогда он приобретает положительный заряд за счет положительного заряда ядра. Но свойства вещества при этом не изменяются. А вот если изменить состав ядра, то это будет уже другое вещество с другими свойствами. Сделать это очень сложно, однако возможно.

Ядро атома состоит из положительно заряженных частиц. Частицы называются протонами. В состоянии покоя количество протонов и электронов равно, таким образом атом имеет нулевой заряд. Масса каждого протона в 1840 раз больше массы любого электрона. Масса ядра - это около 99% массы всего атома.

А вот заряд протона равен по модулю заряду одного электрона. Опыты показали, что ядро состоит не только из протонов. В его состав входят еще частицы, не имеющие заряда и практически равные по массе протонам. Эти частицы назвали нейтронами. Различие в составе атома на один протон или нейтрон придает атому совсем другие свойства. Это уже разные вещества.

Атом может без всякого ущерба терять электроны, и тогда его заряд становится положительным. Такой атом называют положительно заряженным ионом. Атом может также и приобретать дополнительные электроны. В таком случае атом получает отрицательный заряд, и его называют отрицательным ионом. Надо еще сказать, что изменяться может только заряд атома в ту или иную сторону. Заряд каждого отдельного электрона или протона – величина постоянная, и изменяться не может ни при каких условиях.

Радиоактивность: альфа-, бета-, гамма-излучение

Ни для кого не секрет, что радиация вредна. Это знают все. Все слышали про ужасные жертвы и опасность радиоактивного воздействия. Что же такое радиация? Как она возникает? Существуют ли разные виды радиации? И как от нее защититься?

Слово «радиация» происходит от латинского radius и обозначает луч. В принципе радиация – это все виды существующих в природе излучений – радиоволны, видимый свет, ультрафиолет и так далее. Но излучения бывают различными, некоторые из них полезны, некоторые вредны. Мы в обычной жизни привыкли словом радиация называть вредное излучение, возникающее вследствие радиоактивности некоторых видов вещества. Разберем, как на уроках физики объясняют явление радиоактивности.

Радиоактивность в физике

Мы знаем, что атомы вещества состоят из ядра и вращающихся вокруг него электронов. Так вот ядро – это в принципе очень устойчивое образование, которое сложно разрушить. Однако, ядра атомов некоторых веществ обладают нестабильностью и могут излучать в пространство различную энергию и частицы.

Это излучение называют радиоактивным, и оно включает в себя несколько составляющих, которые назвали соответственно первым трем буквам греческого алфавита: α-, β- и γ- излучение. (альфа-, бета- и гамма-излучение). Эти излучения различны, различно и их действие на человека и меры защиты от него. Разберем все по порядку.

Альфа-излучение

Альфа-излучение - это поток тяжелых положительно заряженных частиц. Возникает в результате распада атомов тяжелых элементов, таких как уран, радий и торий. В воздухе альфа-излучение проходит не более пяти сантиметров и, как правило, полностью задерживается листом бумаги или внешним омертвевшим слоем кожи. Однако если вещество, испускающее альфа-частицы, попадает внутрь организма с пищей или воздухом, оно облучает внутренние органы и становится опасным.

Бета-излучение

Бета-излучение - это электроны, которые значительно меньше альфа-частиц и могут проникать вглубь тела на несколько сантиметров. От него можно защититься тонким листом металла, оконным стеклом и даже обычной одеждой. Попадая на незащищенные участки тела, бета-излучение оказывает воздействие, как правило, на верхние слои кожи. Во время аварии на Чернобыльской АЭС в 1986 году пожарные получили ожоги кожи в результате очень сильного облучения бета-частицами. Если вещество, испускающее бета-частицы, попадет в организм, оно будет облучать внутренние ткани.

Гамма-излучение

Гамма-излучение - это фотоны, т.е. электромагнитная волна, несущая энергию. В воздухе оно может проходить большие расстояния, постепенно теряя энергию в результате столкновений с атомами среды. Интенсивное гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние ткани. Плотные и тяжелые материалы, такие как железо и свинец, являются отличными барьерами на пути гамма-излучения.

Как видно, альфа-излучение по его характеристикам практически не опасно, если не вдохнуть его частички или не съесть с пищей. Бета-излучение может причинить ожоги кожи в результате облучения. Самые опасные свойства у гамма-излучения. Оно проникает глубоко внутрь тела, и вывести его оттуда очень сложно, а воздействие очень разрушительно.

В любом случае без специальных приборов знать, что за вид радиации присутствует в данном конкретном случае нельзя, тем более, что всегда можно случайно вдохнуть частички радиации с воздухом. Поэтому общее правило одно – избегать подобных мест, а если уж попали, то укутаться как можно большим количеством одежды и вещей, дышать через ткань, не есть и не пить, и постараться поскорее покинуть место заражения. А потом при первой же возможности избавиться от всех этих вещей и хорошенько вымыться.

Радиоактивность также можно рассматривать как свидетельство сложного строения атомов . Изначально еще философы древности представляли себе мельчайщую частицу вещества - атом - неделимой частицей. Как радиактивность позволила разрушить данное представление? Подробности по ссылке.