Обратите внимание, что у работы и энергии одинаковые единицы измерения. Это означает, что работа может переходить в энергию. Например, для того, чтобы тело поднять на некоторую высоту, тогда оно будет обладать потенциальной энергией , необходима сила, которая совершит эту работу. Работа силы по поднятию перейдет в потенциальную энергию.

Правило определения работы по графику зависимости F(r): работа численно равна площади фигуры под графиком зависимости силы от перемещения.


Угол между вектором силы и перемещением

1) Верно определяем направление силы, которая выполняет работу; 2) Изображаем вектор перемещения; 3) Переносим вектора в одну точку, получаем искомый угол.


На рисунке на тело действуют сила тяжести (mg), реакция опоры (N), сила трения (Fтр) и сила натяжения веревки F, под воздействием которой тело совершает перемещение r.

Работа силы тяжести



Работа реакции опоры



Работа силы трения



Работа силы натяжения веревки



Работа равнодействующей силы

Работу равнодействующей силы можно найти двумя способами: 1 способ - как сумму работ (с учетом знаков "+" или "-") всех действующих на тело сил, в нашем примере
2 способ - в первую очередь найти равнодействующую силу, затем непосредственно ее работу, см. рисунок


Работа силы упругости

Для нахождения работы, совершенной силой упругости, необходимо учесть, что эта сила изменяется, так как зависит от удлинения пружины. Из закона Гука следует, что при увеличении абсолютного удлинения, сила увеличивается.

Для расчета работы силы упругости при переходе пружины (тела) из недеформированного состояния в деформированное используют формулу

Мощность

Скалярная величина, которая характеризует быстроту выполнения работы (можно провести аналогию с ускорением , которое характеризует быстроту изменения скорости). Определяется по формуле

Коэффициент полезного действия

КПД - это отношение полезной работы, совершенной машиной, ко всей затраченной работе (подведенной энергии) за то же время

Коэффициент полезного действия выражается в процентах. Чем ближе это число к 100%, тем выше производительность машины. Не может быть КПД больше 100, так как невозможно выполнить больше работы, затратив меньше энергии.

КПД наклонной плоскости - это отношение работы силы тяжести, к затраченной работе по перемещению вдоль наклонной плоскости.

Главное запомнить

1) Формулы и единицы измерения;
2) Работу выполняет сила;
3) Уметь определять угол между векторами силы и перемещения

Если работа силы при перемещении тела по замкнутому пути равна нулю, то такие силы называют консервативными или потенциальными . Работа силы трения при перемещении тела по замкнутому пути никогда не равна нулю. Сила трения в отличие от силы тяжести или силы упругости является неконсервативной или непотенциальной .

Есть условия, при которых нельзя использовать формулу
Если сила является переменной, если траектория движения является кривой линией. В этом случае путь разбивается на малые участки, для которых эти условия выполняются, и подсчитать элементарные работы на каждом из этих участков. Полная работа в этом случае равна алгебраической сумме элементарных работ:

Значение работы некоторой силы зависит от выбора системы отсчета.

С механической работой (работой силы) вы уже знакомы из курса физики основной школы. Напомним приведенное там определение механической работы для следующих случаев.

Если сила направлена так же, как перемещение тела, то работа силы


В этом случае работа силы положительна.

Если сила направлена противоположно перемещению тела, то работа силы

В этом случае работа силы отрицательна.

Если сила f_vec направлена перпендикулярно перемещению s_vec тела, то работа силы равна нулю:

Работа – скалярная величина. Единицу работы называют джоуль (обозначают: Дж) в честь английского ученого Джеймса Джоуля, сыгравшего важную роль в открытии закона сохранения энергии. Из формулы (1) следует:

1 Дж = 1 Н * м.

1. Брусок массой 0,5 кг переместили по столу на 2 м, прикладывая к нему силу упругости, равную 4 Н (рис. 28.1). Коэффициент трения между бруском и столом равен 0,2. Чему равна работа действующей на брусок:
а) силы тяжести m?
б) силы нормальной реакции ?
в) силы упругости ?
г) силы трения скольжения тр?


Суммарную работу нескольких сил, действующих на тело, можно найти двумя способами:
1. Найти работу каждой силы и сложить эти работы с учетом знаков.
2. Найти равнодействующую всех приложенных к телу сил и вычислить работу равнодействующей.

Оба способа приводят к одному и тому же результату. Чтобы убедиться в этом, вернитесь к предыдущему заданию и ответьте на вопросы задания 2.

2. Чему равна:
а) сумма работ всех действующих на брусок сил?
б) равнодействующая всех действующих на брусок сил?
в) работа равнодействующей? В общем случае (когда сила f_vec направлена под произвольным углом к перемещению s_vec) определение работы силы таково.

Работа A постоянной силы равна произведению модуля силы F на модуль перемещения s и на косинус угла α между направлением силы и направлением перемещения:

A = Fs cos α (4)

3. Покажите, что из общего определения работы следуют к выводы, показанные на следующей схеме. Сформулируйте их словесно и запишите в тетрадь.


4. К находящемуся на столе бруску приложена сила, модуль которой 10 Н. Чему равен угол между этой силой и перемещением бруска, если при перемещении бруска по столу на 60 см эта сила совершила работу: а) 3 Дж; б) –3 Дж; в) –3 Дж; г) –6 Дж? Сделайте пояснительные чертежи.

2. Работа силы тяжести

Пусть тело массой m движется вертикально от начальной высоты h н до конечной высоты h к.

Если тело движется вниз (h н > h к, рис. 28.2, а), направление перемещения совпадает с направлением силы тяжести, поэтому работа силы тяжести положительна. Если же тело движется вверх (h н < h к, рис. 28.2, б), то работа силы тяжести отрицательна.

В обоих случаях работа силы тяжести

A = mg(h н – h к). (5)

Найдем теперь работу силы тяжести при движении под углом к вертикали.

5. Небольшой брусок массой m соскользнул вдоль наклонной плоскости длиной s и высотой h (рис. 28.3). Наклонная плоскость составляет угол α с вертикалью.


а) Чему равен угол между направлением силы тяжести и направлением перемещения бруска? Сделайте пояснительный чертеж.
б) Выразите работу силы тяжести через m, g, s, α.
в) Выразите s через h и α.
г) Выразите работу силы тяжести через m, g, h.
д) Чему равна работа силы тяжести при движении бруска вдоль всей этой же плоскости вверх?

Выполнив это задание, вы убедились, что работа силы тяжести выражается формулой (5) и тогда, когда тело движется под углом к вертикали – как вниз, так и вверх.

Но тогда формула (5) для работы силы тяжести справедлива при движении тела по любой траектории, потому что любую траекторию (рис. 28.4, а) можно представить как совокупность малых «наклонных плоскостей» (рис. 28.4, б).

Таким образом,
работа силы тяжести при движении но любой траектории выражается формулой

A т = mg(h н – h к),

где h н – начальная высота тела, h к – его конечная высота.
Работа силы тяжести не зависит от формы траектории.

Например, работа силы тяжести при перемещении тела из точки A в точку B (рис. 28.5) по траектории 1, 2 или 3 одинакова. Отсюда, в частности, следует, что рибота силы тяжести при перемещении по замкнутой траектории (когда тело возвращается в исходную точку) равна нулю.

6. Шар массой m, висящий на нити длиной l, отклонили на 90º, держа нить натянутой, и отпустили без толчка.
а) Чему равна работа силы тяжести за время, в течение которого шар движется к положению равновесия (рис. 28.6)?
б) Чему равна работа силы упругости нити за то же время?
в) Чему равна работа равнодействующей сил, приложенных к шару, за то же время?


3. Работа силы упругости

Когда пружина возвращается в недеформированное состояние, сила упругости совершает всегда положительную работу: ее направление совпадает с направлением перемещения (рис. 28.7).

Найдем работу силы упругости .
Модуль этой силы связан с модулем деформации x соотношением (см. § 15)

Работу такой силы можно найти графически.

Заметим сначала, что работа постоянной силы численно равна площади прямоугольника под графиком зависимости силы от перемещения (рис. 28.8).

На рисунке 28.9 изображен график зависимости F(x) для силы упругости. Разобьем мысленно все перемещение тела на столь малые промежутки, чтобы на каждом из них силу можно было считать постоянной.

Тогда работа на каждом из этих промежутков численно равна площади фигуры под соответствующим участком графика. Вся же работа равна сумме работ на этих участках.

Следовательно, и в этом случае работа численно равна площади фигуры под графиком зависимости F(x).

7. Используя рисунок 28.10, докажите, что

работа силы упругости при возвращении пружины в недеформированное состояние выражается формулой

A = (kx 2)/2. (7)


8. Используя график на рисунке 28.11, докажите, что при изменении деформации пружины от x н до x к работа силы упругости выражается формулой

Из формулы (8) мы видим, что работа силы упругости зависит только от начальной и конечной деформации пружины, Поэтому если тело сначала деформируют, а потом оно возвращается в начальное состояние, то работа силы упругости равна нулю. Напомним, что таким же свойством обладает и работа силы тяжести.

9. В начальный момент растяжение пружины жесткостью 400 Н/м равно 3 см. Пружину растянули еще на 2 см.
а) Чему равна конечная деформация пружины?
б) Чему равна работа силы упругости пружины?

10. В начальный момент пружина жесткостью 200 Н/м растянута на 2 см, а в конечный момент она сжата на 1 см. Чему равна работа силы упругости пружины?

4. Работа силы трения

Пусть тело скользит по неподвижной опоре. Действующая на тело сила трения скольжения направлена всегда противоположно перемещению и, следовательно, работа силы трения скольжения отрицательно при любом направлении перемещения (рис. 28.12).

Поэтому если сдвинуть брусок вправо, а пегом на такое же расстояние влево, то, хотя он и вернется в начальное положение, суммарная работа силы трения скольжения не будет равна нулю. В этом состоит важнейшее отличие работы силы трения скольжения от работы силы тяжести и силы упругости. Напомним, что работа этих сил при перемещении тела по замкнутой траектории равна нулю.

11. Брусок массой 1 кг передвигали по столу так, что его траекторией оказался квадрат со стороной 50 см.
а) Вернулся ли брусок в начальную точку?
б) Чему равна суммарная работа действовавшей на брусок силы трения? Коэффициент трения между бруском и столом равен 0,3.

5. Мощность

Часто важна не только совершаемая работа, но и скорость совершения работы. Она характеризуется мощностью.

Мощностью P называют отношение совершенной работы A к промежутку времени t, за который эта работа совершена:

(Иногда мощность в механике обозначают буквой N, а в электродинамике – буквой P. Мы считаем более удобным одинаковое обозначение мощности.)

Единица мощности – ватт (обозначают: Вт), названная в честь английского изобретателя Джеймса Уатта. Из формулы (9) следует, что

1 Вт = 1 Дж/c.

12. Какую мощность развивает человек, равномерно поднимая ведро воды массой 10 кг на высоту 1 м в течение 2 с?

Часто мощность удобно выражать не через работу и время, а через силу и скорость.

Рассмотрим случай, когда сила направлена вдоль перемещения. Тогда работа силы A = Fs. Подставляя это выражение в формулу (9) для мощности, получаем:

P = (Fs)/t = F(s/t) = Fv. (10)

13. Автомобиль едет по горизонтальной дороге со скоростью 72 км/ч. При этом его двигатель развивает мощность 20 кВт. Чему равна сила сопротивления движению автомобиля?

Подсказка. Когда автомобиль движется по горизонтальной дороге с постоянной скоростью, сила тяги равна по модулю силе сопротивления движению автомобиля.

14. Сколько времени потребуется для равномерного подъема бетонного блока массой 4 т на высоту 30 м, если мощность двигателя подъемного крана 20 кВт, а КПД электродвигателя подъемного крана равен 75%?

Подсказка. КПД электродвигателя равен отношению работы по подъему груза к работе двигателя.

Дополнительные вопросы и задания

15. Мяч массой 200 г бросили с балкона высотой 10 и под углом 45º к горизонту. Достигнув в полете максимальной высоты 15 м, мяч упал на землю.
а) Чему равна работа силы тяжести при подъеме мяча?
б) Чему равна работа силы тяжести при спуске мяча?
в) Чему равна работа силы тяжести за все время полета мяча?
г) Есть ли в условии лишние данные?

16. Шар массой 0,5 кг подвешен к пружине жесткостью 250 Н/м и находится в равновесии. Шар поднимают так, чтобы пружина стала недеформированной, и отпускают без толчка.
а) На какую высоту подняли шар?
б) Чему равна работа силы тяжести за время, в течение которого шар движется к положению равновесия?
в) Чему равна работа силы упругости за время, в течение которого шар движется к положению равновесия?
г) Чему равна работа равнодействующей всех приложенных к шару сил за время, в течение которого шар движется к положению равновесия?

17. Санки массой 10 кг съезжают без начальной скорости со снежной горы с углом наклона α = 30º и проезжают некоторое расстояние по горизонтальной поверхности (рис. 28.13). Коэффициент трения между санками и снегом 0,1. Длина основания горы l = 15 м.

а) Чему равен модуль силы трения при движении санок по горизонтальной поверхности?
б) Чему равна работа силы трения при движении санок по горизонтальной поверхности на пути 20 м?
в) Чему равен модуль силы трения при движении санок по горе?
г) Чему равна работа силы трения при спуске санок?
д) Чему равна работа силы тяжести при спуске санок?
е) Чему равна работа равнодействующей сил, действующих на санки, при их спуске с горы?

18. Автомобиль массой 1 т движется со скоростью 50 км/ч. Двигатель развивает мощность 10 кВт. Расход бензина составляет 8 л на 100 км. Плотность бензина 750 кг/м 3 , а его удельная теплота сгорания 45 МДж/кг. Чему равен КПД двигателя? Есть ли в условии лишние данные?
Подсказка. КПД теплового двигателя равен отношению совершенной двигателем работы к количеству теплоты, которое выделилось при сгорании топлива.

Нам осталось рассмотреть работу третьей механической силы - силы трения скольжения. В земных условиях сила трения в той пли иной мере проявляется при всех движениях тел.

От силы тяжести и силы упругости сила трения скольжения отличается тем, что она от координат не зависит и возникает всегда при относительном движении соприкасающихся тел.

Рассмотрим работу силы трения при движении тела относительно неподвижной поверхности, с которой оно соприкасается. В этсм случае сила трения направлена против движения тела. Ясно, что по отношению к направлению перемещения такого тела сила трения не может быть направлена под каким-нибудь другим углем, кроме угла 180°. Поэтому работа силы трения отрицательна. Вычислять работу силы трения нужно по формуле

где - сила трения, - длина пути, на протяжении которого действует сила трения

Когда на тело действует сила тяжести или сила упругости, может двигаться и в направлении силы, и против направления силы. В первом случае работа силы положительна, во втором - отрицательна. При движении тела «туда и обратно» полная работа равна нулю.

О работе силы трения этого сказать нельзя. Работа силы трения отрицательна и при движении «туда», движении обратно». Поэтому работа силы трения после возвращения тела в исходную точку (при движении по замкнутому пути) неравна нулю.

Задача. Вычислите работу силы трения при торможении поезда массой 1200 т до полной остановки, если скорость поезда в момент выключения двигателя была 72 км/ч. Решение. Воспользуемся формулой

Здесь - масса поезда, равная кг, - конечная скорость поезда, равная нулю, и - его начальная скорость, равная 72 км/ч = 20 м/сек. Подставив эти значения, получим:

Упражнение 51

1. На тело действует сила трения. Может ли работа этой силы равняться нулю?

2. Если тело, на которое действует сила трения, пройдя некоторую траекторию, вернется в исходную точку, будет ли работа сипы трения равна нулю?

3. Как изменяется кинетическая энергия тела при работе силы трения?

4. Сани массой 60 кг, скатившись с горы, проехали по горизонтальному участку дороги 20 м. Найдите работу силы трения на этом участке, если коэффициент трения полозьев саней о снег 0,02.

5. К точильному камню радиусом 20 см прижимают затачиваемую деталь с силой 20 н. Определите, какая работа совершается двигателем за 2 мин, если точильный камень делает 180 об мин, а коэффициент трения детали о камень равен 0,3.

6. Шофер автомобиля выключает двигатель и начинает тормозить в 20 м от светофора. Считая силу трения равной 4 000 к, найдите, при какой наибольшей скорости автомобиля он успеет остановиться перед светофором, если масса автомобиля равна 1,6 т?

1

Если на тело массы m , находящегося на гладкой горизонтальной поверхности, действует
постоянная сила F , направленная под некото-рым углом α к горизонту и при этом тело перемещается на некоторое расстояние S , то говорят, что сила F совершила работу A . Величину работы определяют по формуле :

A = F × S cosα (1)

Однако в природе идеально гладких поверх-ностей не бывает, и на поверхности контакта двух тел всегда возникают силы трения. Вот как об этом пишется в учебнике : «Рабо-та силы трения покоя равна нулю, поскольку пе-ремещение отсутствует. При скольжении твер-дых поверхностей сила трения направлена про-тив перемещения. Ее работа отрицательна. Вследствие этого кинетическая энергия трущих-ся тел превращается во внутреннюю - трущиеся поверхности нагреваются».

А ТР = F ТР ×S = μNS (2)

где μ - коэффициент трения скольжения.

Только в учебнике О.Д. Хвольсона рассмотрен случай УСКОРЕННОГО ДВИ-ЖЕНИЯ при наличии сил трения: «Итак, следует отличать два случая производства работы: в пер-вом сущность работы заключается в преодолевании внешнего сопротивления движению, которое совершается без увеличения скорости движения тела; во втором - работа обнаруживается увели-чением скорости движения, к которому внешний мир относится индифферентно.

На деле мы обыкновенно имеем СОЕДИНЕ-НИЕ ОБОИХ СЛУЧАЕВ: сила f преодолевает какие-либо сопротивления и в то же время меня-ет скорость движения тела.

Положим, что f " не равно f , а именно, что f "< f . В таком случае на тело действует сила
f - f ", работа ρ которой вызывает увеличе-ние скорости тела. Мы имеем ρ =(f - f ")S ,
откуда

fS = f "S + ρ (*)

Работа r = fS состоит из двух частей: f "S тратится на преодолевание внешнего со-противления, ρ на увеличение скорости тела».

Представим это в современной интерпрета-ции (рис. 1). На тело массы m действует сила тяги F T , которая больше силы трения F TP = μN = μmg. Работу силы тяги в соответствии с формулой (*) можно записать так

A =F T S =F TP S +F a S = A TP + A a (3)

где F a =F T - F TP - сила, вызывающая ускоренное движение тела в соответствии со II зако-ном Ньютона: F a = ma . Работа силы трения отрицательна, но здесь и далее мы будем исполь-зовать силу трения и работу трения по модулю. Для дальнейших рассуждений необходим чис-ленный анализ. Примем следующие данные: m =10 кг; g =10 м/с 2 ; F T =100 Н; μ = 0,5; t =10 с. Проводим следующие вы-числения: F TP = μmg = 50 Н; F a = 50 Н; a =F a /m =5 м/с 2 ; V = at = 50 м/с; K = mV 2 /2 =12,5 кДж; S = at 2 /2 = 250 м; A a = F a S =12,5 кДж; A TP =F TP S =12,5 kДж. Таким образом суммарная работа A = A TP + A a =12,5 +12,5 = 25 кДж

А теперь рассчитаем работу силы тяги F T для случая, когда трение отсутствует (μ =0).

Проводя аналогичные вычисления, получаем: a =10 м/с 2 ; V =100м/с; K = 50 кДж; S = 500 м; A = 50 кДж. В последнем случае за те же 10 с мы получили работу в два раза больше. Могут возразить, что и путь в два раза больше. Однако, что бы ни говорили, получается парадоксальная ситуация: мощности, развивае-мой одной и той же силой, отличаются в два раза, хотя импульсы сил одинаковы I =F T t =1 кН.с. Как писал М.В. Ломоносов еще в 1748 г.: «...но все изменения, совершающиеся в природе, происходят таким образом, что сколько к чему прибавилось столько же отнимется у другого...». Поэтому попробуем получить другое выражение для определения работы.

Запишем II закон Ньютона в дифференци-альной форме:

F . dt = d (mV ) (4)

и рассмотрим задачу о разгоне первоначаль-но неподвижного тела (трение отсутствует). Ин-тегрируя (4), получим: F ×t = mV . Возведя в квадрат и разделив на 2m обе части равенства, получим:

F 2 t 2 / 2m = mV 2 / 2 A = K (5)

Таким образом, получили другое выражение для вычисления работы

A = F 2 t 2 / 2m = I 2 / 2m (6)

где I = F × t - импульс силы. Это выражение не связано с путем S , пройденным телом за время t , т.е. оно может быть использовано для вычис-ления работы, совершаемой импульсом силы и в том случае, если тело остается неподвижным, хотя, как утверждают во всех курсах физики, в этом случае никакой работы не совершается.

Переходя к нашей задаче об ускоренном движении с трением, запишем сумму импульсов сил: I T = I a + I TP , где I T = F T t ; I a = F a t ; I TP = F TP t . Возведя в квадрат сумму импуль-сов, получим:

F T 2 t 2 = F a 2 t 2 + 2F a F TP t 2 + F TP 2 t 2

Разделив все члены равенства на 2m , полу-чим:

или A= A a + A УТ + A TP

где A a =F a 2 t 2 / 2 m - работа, затрачиваемая ускорение; A TP = F TP 2 t 2 /2 m - работа, затрачиваемая на преодоление силы трения при равно-мерном движении, а A УT = F a F TP t 2 / m - ра-бота, затрачиваемая на преодоление силы трения при ускоренном движении. Численный расчет дает следующий результат:

A = A a + A Ут + A TP = 12,5 + 25 +12,5 = 50 кДж,

т.е. мы получили ту же самую величину работы, которую совершает сила F T при отсут-ствии трения.

Рассмотрим более общий случай движения тела с трением, когда на тело действует сила F , направленная под углом α к горизонту (рис. 2). Теперь сила тяги F T = F cos α , а силу F Л = F sin α - назовем силой левитации, она уменьшает силу тяжести P = mg , а в случае F Л = mg тело не будет оказывать давления на опору, будет находиться в квазиневесомом состоянии (состоянии левитации). Сила трения F TP = μ N = μ (P - F Л ) . Силу тяги можно записать в виде F T = F a + F TP , а из прямо-угольного треугольника (рис. 2) получим: F 2 =F Т 2 + F Л 2 . Умножая последнее соотно-шение на t 2 , получим баланс импульсов сил, а разделив на 2m , получим баланс энергий (ра-бот):

Приведем численный расчет для силы F = 100 Н и α = 30 o при тех же условиях (m = 10 кг; μ = 0,5; t = 10 с). Работа силы F будет равна A = F 2 t 2 /2m = 50 , а формула (8) дает следующий результат (с точностью до третьего знака после запятой):

50=15,625+18,974-15,4-12,5+30,8+12,5 кДж.

Как показывают расчеты, сила F = 100 Н, действуя на тело массы m = 10 кг под любым углом α за 10 с совершает одну и ту же работу 50 кДж.

Последний член в формуле (8) представляет собой работу силы трения при равномерном движении тела по горизонтальной поверхности со скоростью V

Таким образом, под каким бы углом не дей-ствовала данная сила F на данное тело массы m , при наличии трения или без него, за время t будет совершена одна и та же работа (даже если тело неподвижно):

Рис.1

Рис.2

СПИСОК ЛИТЕРАТУРЫ

  1. Матвеев А.Н. механика и теория относительности. Учеб.пособие для физ.спец.вузов. -М.: Высш.шк., 1986.
  2. Стрелков СП. Механика. Общий курс физики. Т. 1. - М.: ГИТТЛ, 1956.
  3. Хвольсон О.Д. Курс физики. Т. 1. РСФСР Госуд.Изд-во, Берлин, 1923.

Библиографическая ссылка

ИВАНОВ Е.М. РАБОТА ПРИ ДВИЖЕНИИ ТЕЛ С ТРЕНИЕМ // Современные проблемы науки и образования. – 2005. – № 2.;
URL: http://science-education.ru/ru/article/view?id=1468 (дата обращения: 20.04.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Допустим, что тело массы передвигают по горизонтальной поверхности стола из точки в точку В (рис. 5.26). При этом на тело со стороны стола действует сила трения. Коэффициент трения равен Один раз тело перемещается по траектории другой - по траектории Длина равна а длина Рассчитаем работу, которую совершит сила трения при этих движениях.

Как известно, сила трения Сила нормального давления так как поверхность стола горизонтальна. Поэтому сила трения в обоих движениях будет постоянна по модулю, равна и направлена во всех точках траектории в сторону, противоположную скорости.

Постоянство модуля силы трения позволяет написать выражение для работы силы трения сразу для всего расстояния, пройденного телом. При движении по траектории совершается работа

при движении по траектории

Знак минус появился потому, что угол между направлением силы и направлением перемещения равен 180°. Расстояние не равно поэтому работа не равна При переходе из точки А в точку В по разным траекториям сила трения совершает разную работу.

Таким образом, в отличие от сил всемирного тяготения и упругости, работа силы трения зависит от формы траектории, по которой двигалось тело.

Зная только начальное и конечное положения тела и не имея сведений о траектории движения, мы уже не можем заранее сказать, какая работа будет совершена силой трения. В этом состоит одно из существенных отличий силы трения от сил всемирного тяготения и упругости.

Это свойство силы трения может быть выражено и по-другому. Допустим, что тело было перемещено из по траектории а затем было возвращено обратно в по траектории . В результате этих двух движений образуется замкнутая траектория На всех участках этой траектории работа силы трения будет отрицательна. Полная работа, совершенная за все время этого движения, равна

работа силы трения на замкнутой траектории не равна нулю.

Отметим еще одну особенность силы трения. При перемещении тела из была совершена работа против силы трения. Если в точке В тело освободить от внешних воздействий, то сила трения не вызовет никакого обратного движения тела. Она не сможет вернуть ту работу, которая была совершена на преодоление ее действия. В результате работы силы трения происходит только уничтожение, разрушение механического движения тела и превращение этого движения в тепловое, хаотическое движение атомов и молекул. Работа силы трения показывает величину того запаса механического движения, который необратимо превращается во время действия силы трения в другую форму движения - в тепловое движение.

Таким образом, сила трения обладает рядом таких свойств, которые ставят ее в особое положение. В отличие от сил тяжести и упругости сила трения по модулю и направлению зависит от скорости относительного движения тел; работа силы трения зависит от формы траектории, по которой движутся тела; работа силы трения необратимо превращает механическое движение тел в тепловое движение атомов и молекул.

Все это при решении практических задач заставляет рассматривать действие сил упругости и трения отдельно. Вследствие этого силу трения часто в расчетах рассматривают как внешнюю по отношению к любой механической системе тел.