Словарь измерительных приборов. Измерение величин Которые можно измерить и

Термометр – это прибор, предназначенный для измерения температуры жидкостной, газообразной или твердой среды. Изобретателем первого устройства для измерения температуры является Галилео Галилей. Название прибора с греческого языка переводится как «измерять тепло». Первый прототип Галилея существенно отличался от современных. В более привычном виде устройство появилась спустя более чем через 200 лет, когда за изучение данного вопроса взялся шведский физик Цельсий. Он разработал систему измерения температуры, разделив термометр на шкалу от 0 до 100. В честь физика уровень температуры измеряются в градусах Цельсия.

Разновидности по принципу действия

Хотя с момента изобретения первых термометров прошло уже более через 400 лет, эти устройства до сих пор продолжают совершенствоваться. В связи с этим появляются все новые устройства, основанные на ранее не применяемых принципах действия.

Сейчас актуальными являются 7 разновидностей термометров:
  • Жидкостные.
  • Газовые.
  • Механические.
  • Электрические.
  • Термоэлектрические.
  • Волоконно-оптические.
  • Инфракрасные.
Жидкостные

Термометры относятся к самым первым приборам. Они работают на принципе расширения жидкостей при изменении температуры. Когда жидкость нагревается – она расширяется, а когда охлаждается, то сжимается. Само устройство состоит из очень тонкой стеклянной колбы, заполненной жидким веществом. Колба прикладывается к вертикальной шкале, выполненной в виде линейки. Температура измеряемой среды равна делению на шкале, на которое указывает уровень жидкости в колбе. Эти устройства являются очень точными. Их погрешность редко составляет более 0,1 градуса. В различном исполнении жидкостные приборы способны измерять температуру до +600 градусов. Их недостаток в том, что при падении колба может разбиться.

Газовые

Работают точно так же как и жидкостные, только их колбы заполняются инертным газом. Благодаря тому, что в качестве наполнителя используется газ, увеличивается диапазон измерения. Такой термометр может показывать максимальную температуру в пределах от +271 до +1000 градусов. Данные приборы обычно применяются для снятия показания температуры различных горячих веществ.

Механический

Термометр работает по принципу деформации металлической спирали. Такие приборы оснащаются стрелкой. Они внешне немного напоминает стрелочные часы. Подобные устройства используется на панели приборов автомобилей и различной спецтехнике. Главное достоинство механических термометров в их прочности. Они не боятся встряски или ударов, как модели из стекла.

Электрические

Приборы работают по физическому принципу изменения уровня сопротивления проводника при различных температурах. Чем горячее металл, тем его сопротивляемость при передаче электрического тока выше. Диапазон чувствительности электротермометров зависит от металла, который использован в качестве проводника. Для меди он составляет от -50 до +180 градусов. Более дорогие модели на платине могут указывать на температуру от -200 до +750 градусов. Такие приборы применяются как датчики температуры на производстве и в лабораториях.

Термоэлектрический

Термометр имеет в своей конструкции 2 проводника, которые измеряют температуру по физическому принципу, так называемому эффекту Зеебека. Подобные приборы имеют широкий диапазон измерения от -100 до +2500 градусов. Точность термоэлектрических устройств составляет около 0,01 градуса. Их можно встретить в промышленном производстве, когда требуется измерение высоких температур свыше 1000 градусов.

Волоконно-оптические

Делаются из оптоволокна. Это очень чувствительные датчики, которые могут измерять температуру до +400 градусов. При этом их погрешность не превышает 0,1 градуса. В основе такого термометра лежит натянутое оптоволокно, которое при изменении температуры растягивается или сжимается. Проходящий сквозь него луч света преломляется, что фиксирует оптический датчик, сопоставляющий преломление с температурой окружающей среды.

Инфракрасный

Термометр, или пирометр, является одним из самых недавних изобретений. Они имеют верхний диапазон измерения от +100 до +3000 градусов. В отличие от предыдущих разновидности термометров, они снимают показания без непосредственного контакта с измеряемым веществом. Прибор посылает инфракрасный луч на измеряемую поверхность, и на небольшом экране отображает ее температуру. При этом точность может отличаться на несколько градусов. Подобные устройства применяются для измерения уровня нагрева металлических заготовок, которые находятся в горне, корпуса двигателя и пр. Инфракрасные термометры способны показать температуры открытого пламени. Подобные устройства применяются еще в десятках различных сфер.

Разновидности по предназначению
Термометры можно классифицировать на несколько групп:
  • Медицинские.
  • Бытовые для воздуха.
  • Кухонные.
  • Промышленные.
Медицинский термометр

Медицинские термометры обычно называют градусники. Они имеют низкий диапазон измерения. Это связано с тем, что температура тела живого человека не может составлять ниже +29,5 и выше +42 градусов.

В зависимости от исполнения медицинские градусники бывают:
  • Стеклянные.
  • Цифровые.
  • Соска.
  • Кнопка.
  • Инфракрасный ушной.
  • Инфракрасный лобный.

Стеклянные термометры являются первыми, которые начали применять для медицинских целей. Данные устройства универсальны. Обычно их колбы заполняются спиртом. Раньше для таких целей использовалась ртуть. Подобные устройства имеют один большой недостаток, а именно необходимости длительного ожидания для отображения реальной температуры тела. При подмышечном исполнении продолжительность ожидания составляет не менее 5 минут.

Цифровые термометры имеют небольшой экран, на который выводится температура тела. Они способны показать точные данные спустя 30-60 секунд с момента начала измерения. Когда градусник получает конечную температуру, он создает звуковой сигнал, после которого его можно снимать. Данные приборы могут работать с погрешностью, если не очень плотно прилегают к телу. Существуют дешевые модели электронных термометров, которые снимают показания не менее долго, чем стеклянные. При этом они не создают звуковой сигнал об окончании измерения.

Термометры соски сделаны специально для маленьких детей. Устройство представляет собой соску-пустышку, которая вставляется в рот младенца. Обычно такие модели после завершения измерения подают музыкальный сигнал. Точность устройств составляет 0,1 градуса. В том случае если малыш начинает дышать через рот или плакать, отклонение от реальной температуры может быть существенным. Продолжительность измерения составляет 3-5 минут.

Термометры кнопки применяются тоже для детей возрастом до трех лет. По форме такие приборы напоминают канцелярскую кнопку, которая размещается ректально. Данные устройства снимают показания быстро, но имеют низкую точность.

Инфракрасный ушной термометр считывает температуру из барабанной перепонки. Такое устройство способно снять измерения всего за 2-4 секунды. Оно также оснащается цифровым дисплеем и работает на . Данное устройство имеет подсветку для облегчения введения в ушной проход. Приборы подходят для измерения температуры у детей старше 3 лет и взрослых, поскольку у младенцев слишком тонкий ушной канал, в который наконечник термометра не проходит.

Инфракрасные лобные термометры просто прикладываются ко лбу. Они работают по такому же принципу, как и ушные. Одно из преимуществ таких устройств в том, что они могут действовать и бесконтактно на расстоянии 2,5 см от кожи. Таким образом, с их помощью можно измерить температуру тела ребенка не разбудив его. Скорость работы лобных термометров составляет несколько секунд.

Бытовые для воздуха

Для измерения температуры воздуха на улице или в помещении применяются бытовые термометры. Они, как правило, выполнены в стеклянном варианте и заполнены спиртом или ртутью. Обычно диапазон их измерения в уличном исполнении составляет от -50 до +50 градусов, а в комнатном от 0 до +50 градусов. Подобные приборы часто можно встретить в виде украшений для интерьера или магнита на холодильник.

Кухонные

Кухонные термометры предназначены для измерения температуры различных блюд и ингредиентов. Они могут быть механическими, электрическими или жидкостными. Их применяют в тех случаях, когда необходимо строго контролировать температуру по рецепту, к примеру, при приготовлении карамели. Обычно подобные устройства идут в комплекте с герметичным тубусом для хранения.

Промышленные

Промышленные термометры предназначены для измерения температуры в различных системах. Обычно они представляют собой приборы механического типа со стрелкой. Их можно увидеть в магистралях водяного и газового снабжения. Промышленные модели бывают электрические, инфракрасные, механические и пр. Они имеют самое большое разнообразие форм, размеров и диапазонов измерения.

На заре развития знаний об электричестве, достаточно было оперировать такими понятиями, как напряжение, сопротивление проводника, сила тока. Соответственно, для измерения этих величин использовались вольтметры, омметры, амперметры.

Современные электроприборы – это высокотехнологичные устройства, которые заключают в своей конструкции множество инженерных решений, в том числе различные электронные модули. Для отладки или ремонта систем, использующих эти модули, необходимо производить измерение множества параметров, связанных с работой устройств, для чего используется множество контрольно-измерительных приборов.

Наиболее простым и доступным прибором, используемым для этих целей, является мультиметр.

Назначение и виды

Назначение прибора угадывается из названия. «Мульти» – приставка в сложных словах, означающая «много». «Метрео» переводится с греческого языка как «измерять». Получается, что мультиметр – это прибор, которым можно измерить много различных параметров. Конечно же, почти все измеряемые параметры, так или иначе, связаны с электричеством.

Мультиметром невозможно измерить, например, артериальное давление человека или влажность воздуха, но используя некоторые модели, можно измерить температуру какого-либо предмета, жидкости или газа.

По конструкции выделяются следующие виды мультиметров:

  1. аналоговые;
  2. цифровые.

Аналоговые, ранее появившиеся в применении, заметно уступают цифровым в точности измерений и количестве измеряемых параметров. Они требуют дополнительной настройки и подготовки, перед тем как производить непосредственно измерение.

В конструкции приборов могут присутствовать элементы, работа которых основана на использовании явления магнетизма.

Точность аналоговых устройств сильно зависит от наличия магнитных полей в зоне измерений, влажности и температуры окружающей среды. Показания на таких устройствах считываются со шкалы, которая является многофункциональной.

Цифровые мультиметры намного проще в эксплуатации, чем аналоговые, они имеют более широкий диапазон выполняемых функций и пределы измерений, но при этом цена их выше. Показания выводятся в виде цифровой информации на жидкокристаллическом дисплее. Очень часто дисплей имеет подсветку для удобства использования мультиметра при недостаточном освещении.

Применение

Бывают случаи, когда человек, являясь профессионалом в какой-либо области, не касающейся электричества, совершенно не знает, зачем нужен мультиметр. Такое возможно потому, что еще недавно, буквально пару десятилетий назад, приборы эти производились только в аналоговом исполнении и были довольно дорогими.

Применялись они, в основном, профессиональными электриками, были громоздкими, иногда требовали применения дополнительного источника питания.

В последнее время мультиметры делают компактными, недорогими, пользоваться ими стало намного проще. Любой рачительный хозяин сейчас обладает хотя бы простейшей моделью из большого семейства этих устройств.

Ведь, если установлена причина неисправности какого-либо прибора домашнего обихода, то устранение ее может оказаться под силу обычному человеку, не обладающему профессиональными знаниями и навыками электрика. При этом нередко, имея под рукой такой полезный измерительный прибор, владелец его не всегда использует все функции мультиметра.

Мультиметр применяется при ремонте электроприборов, отладке схем, электронных устройств. В повседневной жизни он может использоваться при ремонте электрической бытовой техники, электрической части автомобилей, мотоциклов, устранении неисправностей в электрических сетях, при устройстве проводки, ремонте радиоаппаратуры. Область применения очень велика.

Какие параметры измеряет

Как же применяется один и тот же прибор в разных, на первый взгляд, ситуациях?

Все очень просто. В электрических устройствах обязательно существует множество элементов – электродвигатели, радиодетали, переключатели, катушки индуктивности, микросхемы, реле и прочие компоненты. Работа их непременно связана с наличием электричества, которое характеризуется такими параметрами как напряжение и сила тока.

Все типы мультиметров могут применяться при измерении напряжения переменного и постоянного тока, сопротивления проводника или участка цепи, силы тока на участке цепи с включенной нагрузкой.

Цифровой мультиметр, кроме того предоставляет возможность измерения емкости конденсаторов.

С помощью мультиметра можно проверять исправность диодов, транзисторов. Многие модели могут измерять частоту. Некоторые разновидности мультиметров имеют датчики температуры.

При обслуживании бытовой техники применение мультиметра основывается, как правило, на необходимости проверки – есть ток или нет тока. То есть проверяются подводящие кабели и шнуры на предмет обрыва, а также разъемы электрических цепей на наличие контакта. В этом случае мультиметр используется как омметр.

Проверка трансформаторов и электродвигателей

Иногда возникает необходимость проверки входного и выходного напряжения на трансформаторах блоков питания. Для измерения этих параметров необходимо использовать прибор, как вольтметр, произведя соответствующие настройки.

Многие бытовые машины содержат в конструкции электродвигатели, и в случае, когда двигатель не включается, приходится проверять наличие питающего напряжения на клеммах.

Если в питающей цепи неисправностей не выявлено, необходимо проверять исправность ротора, статора двигателя. Для этого можно проверить целостность проводов обмотки и наличие межвиткового замыкания.

Мультиметр при этом используется и как вольтметр, и как омметр.

Проверка реле и электронных схем

Иногда приходится проверять элементы автоматики – реле и электронные блоки. Реле проверяется, как правило, на величину тока открытия, для чего в цепь включается соответствующая нагрузка, и последовательно с ней мультиметр, работающий в режиме амперметра.

В блоках управления проверяется напряжение на соответствующих контактах или сопротивление между определенными парами контактов в соответствии с их функциональным назначением.

Проверяется с помощью мультиметра и работоспособность отдельных элементов электрических схем, например полупроводниковых приборов (транзисторов, тиристоров), конденсаторов.

Для этого детали выпаиваются из плат и вставляются в специальные разъемы на корпусе прибора. Такие функции доступны, как правило, в цифровых мультиметрах.

Применение в мото- и автотехнике

При обслуживании авто- и мототехники (к мототехнике можно отнести и различные садовые машины с двигателями внутреннего сгорания и лодочные моторы и прочую подобную технику) с помощью мультиметра может проверяться исправность генераторов, стартеров, аккумуляторных батарей.

Во всех этих случаях мультиметр используется для получения данных о напряжении и силе тока. Измерения могут проводиться в различных режимах работы проверяемых агрегатов.

В двигателях внутреннего сгорания проверяется система зажигания. Для этого могут прозваниваться свечи, проверяется сопротивление изоляторов. Тестируются катушки зажигания.

При отказе в работе каких-либо систем, в автомобилях проверяется проводка на предмет обрыва или короткого замыкания, двигатели приводов.

При помощи мультиметра можно установить, например, цела ли спираль в лампе накаливания, не вытаскивая лампу из блока фары. Для этого достаточно разъединить разъем питания фары и можно измерить сопротивление лампы, а потом напряжение питания.

В результате можно установить, действительно ли нужно менять лампу или необходимо искать обрыв в цепи. В последних моделях автомобилей это очень актуально, так как для замены лампы порой приходиться разбирать едва ли не всю переднюю облицовку.

Проверка электропроводки

При устройстве новой или ремонте старой проводки всегда появляется необходимость прозвонки кабелей, а также проверки работоспособности электроустановочных изделий, автоматических выключателей. Все эти операции также возможно с успехом осуществить, применив мультиметр.

Правильное использование мультиметра, этого универсального измерительного прибора с множеством функций и возможностей, помогает значительно улучшить условия эксплуатации техники.

Мультиметр помогает своевременно выявить необходимость ее ремонта, увеличивая при этом максимальный срок эксплуатации. Это в конечном итоге позволяет владельцам избежать лишних затрат на ремонт и реновацию.

Каждый человек, который работает в определенной сфере деятельности, сталкивается с измерительными приборами. С их помощью можно замерять определенные показатели и измерять разные предметы.

Купить такие устройства можно тут, где они имеются в огромном ассортименте. От качества измерительного прибора зависит точность того результата, который вы получите в итоге.

Определение цены деления шкалы

Определенная величина, которая называется ценой деления шкалы, рассчитывается по определенным правилам.

Вот основные моменты, о которых стоит помнить:

  • в самом начале нужно взять те значения шкалы, которые расположены по соседству;
  • затем необходимо вычислить их разность;
  • после этого считают число промежуточных делений, которые расположены между этими же значениями;
  • в самом конце полученную разность делят на количество промежуточных делений.

Это основные этапы, которые позволят определить цену деления шкалы. Если вы сделали правильно, то можно получить максимально точный результат.

У таких устройств есть достоинства, которые выгодно отличают их на фоне других вариантов. Измерительные приборы стабильные, способны прослужить максимально длительный срок, показывают результат с наивысшей точностью.

Специалисты, которые работают в разных сферах деятельности, часто пользуются многофункциональными устройствами. С помощью такого оборудования можно измерять одновременно по разным показателям.

Современные измерительные устройства позволяют сохранять данные в памяти и сортировать их по архивам. Если в будущем вам нужно вернуться к прошлой информации, то вы извлечете ее и внимательно просмотрите.

У измерительных приборов есть и другие преимущества. Например, одно устройство заменяет сразу несколько моделей.

Вам будет удобно пользоваться таким оборудованием, потому что переносить его с места на место очень легко. У вас будут свободные руки, поэтому вы ничего не уроните и не разобьете.

Основные виды измерительного оборудования

Чтобы измерить разные расстояния, можно пользоваться дальномером. Это лазерный инструмент, который безошибочно определяет глубину колодца и длину несущей стены.

Чтобы получить максимально точный результат от нивелирования, нужно приобрести оптический нивелир. Это устройство способно решить многие задачи и проблемы.

Выстроить линии, нанести разметку или же спроецировать различные плоскости вы сможете с помощью лазерного построителя плоскостей. Такой инструмент незаменим во время ремонта или же выполнения сложных строительных работ.

Физические величины. Измерение физических величин. Точность и погрешность измерений смотрим в видео:


Что означает измерить физическую величину? Что называют единицей физической величины? Здесь вы найдете ответы на эти очень важные вопросы.

1. Узнаем, что называется физической величиной

Издавна люди для более точного описания каких-нибудь событий, явлений, свойств тел и веществ используют их характеристики. Например, сравнивая тела, которые нас окружают, мы говорим, что книга меньше, чем книжный шкаф, а конь больше кошки. Это означает, что объем коня боль­ше объема кошки, а объем книги меньше объема шкафа.

Объем - пример физической величины, которая характеризует общее свойство тел занимать ту или иную часть пространства (рис. 1.15, а). При этом числовое значение объема каждого из тел индивидуально.

Рис. 1.15 Для характеристики свойства тел занимать ту или иную часть пространства мы используем физическую величину объем (о, б), для характеристики движения - скорость (б, в)

Общая характеристика многих материальных объектов или явлений, которая может приобретать индивидуальное значение для каждого из них, называется физической величиной .

Еще одним примером физической величины может служить известное вам понятие «скорость». Все движущиеся тела изменяют свое положение в про­странстве с течением времени, однако быстрота этого изменения для каждого тела различна (рис. 1.15, б, в). Так, самолет за I с полета успевает изменить свое положение в пространстве на 250 м, автомобиль - на 25 м, человек - на I м, а черепаха - всего на несколько сантиметров. Поэтому физики и говорят, что ско­рость - это физическая величина, которая характеризует быстроту движения.

Нетрудно догадаться, что объем и скорость,- это далеко не все физичес­кие величины, которыми оперирует физика. Масса, плотность, сила, темпе­ратура, давление, напряжение, освещенность - это лишь малая часть тех физических величин, с которыми вы познакомитесь, изучая физику .


2. Выясняем, что означает измерить физическую величину

Для того чтобы количественно описать свойства какого-либо матери­ального объекта или физического явления, необходимо установить значение физической величины, которая характеризует данный объект или явление.

Значение физических величин получают путем измерений (рис. 1.16- 1.19) или вычислений.


Рис. 1.16. «До отправления поезда осталось 5 минут»,- с волнением измеряете вы время

Рис. 1.17 «Я купила килограмм яблок»,- рассказывает мама о своих измерениях массы


Рис. 1.18. «Одевайся теплее, сегодня на улице прохладнее»,- заботится о вас бабушка после измерения температуры воздуха на улице

Рис. 1.19. «У меня снова поднялось давление»,- жалуется женщина после измерения кровяного давления

Измерить физическую величину - значит сравнить ее с однородной величиной, приня­той за единицу.

Рис. 1.20 Если бабушка и внук будут измерять расстояние в ша­гах, то они всегда будут получать разные результаты

Приведем пример из художественной лите­ратуры: «Пройдя шагов триста по берегу реки, маленький отряд вступил под своды дремучего леса, извилистыми тропами которого им надо было странствовать на протяжении десяти дней». (Ж. Верн «Пятнадцатилетний капитан»)


Рис. 1.21.

Герои романа Ж. Верна измеряли пройден­ный путь, сравнивая его с шагом, то есть еди­ницей измерения служил шаг. Таких шагов оказалось триста. В результате измерения было получено числовое значение (триста) физиче­ской величины (пути) в избранных единицах (шагах).

Очевидно, что выбор такой единицы не поз­воляет сравнивать результаты измерений, полу­ченные разными людьми, поскольку длина шага у всех разная (рис. 1.20). Поэтому ради удобства и точности люди давным-давно начали договари­ваться о том, чтобы измерять одну и ту же фи­зическую величину одинаковыми единицами. Ныне в большинстве стран мира действует при­нятая в 1960 году Международная система еди­ниц измерения, которая носит название «Систе­ма Интернациональная» (СИ) (рис. 1.21).

В этой системе единицей длины является метр (м), времени - секунда (с); объем изме­ряется в метрах кубических (м 3), а скорость - в метрах в секунду (м/с). Об остальных единицах СИ вы узнаете позже.

3. Вспоминаем кратные и дольные единицы

Из курса математики вы знаете, что для сокращения записи больших и малых значе­ний разных величин пользуются кратными и дольными единицами.

Кратные единицы - это единицы, кото­рые больше основных единиц в 10, 100, 1000 и более раз. Дольные единицы - это единицы, которые меньше основных в 10, 100, 1000 и более раз.

Для записи кратных и дольных единиц используют приставки. Например, единицы длины , кратные одному метру,- это километр (1000 м), декаметр (10 м).

Единицы длины, дольные одному метру,- это дециметр (0,1 м), сантиметр (0,01 м), микрометр (0,000001 м) и так далее.

В таблице приведены наиболее часто употребляемые приставки.

4. Знакомимся с измерительными приборами

Измерение физических величин ученые проводят с помощью измери­тельных приборов. Простейшие из них - линейка, рулетка - служат для измерения расстояния и линейных размеров тела. Вам также хорошо известны такие измерительные приборы, как часы - прибор для измерения време­ни, транспортир - прибор для измерения углов на плоскости , термометр - прибор для измерения температуры и некоторые другие (рис. 1.22, с. 20). Co многими измерительными приборами вам еще предстоит познакомиться.

Большинство измерительных приборов имеют шкалу, которая обеспечи­вает возможность измерения. Кроме шкалы, на приборе указывают едини­цы, в которых выражается измеренная данным прибором величина*.

По шкале можно установить две наиболее важные характеристики при­бора: пределы измерения и цену деления.

Пределы измерения - это наибольшее и наименьшее значения физической величины , которые можно измерить данным прибором.

В наши дни широко используются электронные измерительные приборы, в которых значение измеренных величин высвечивается на экране в виде цифр. Пределы измере­ния и единицы определяются по паспорту прибора или устанавливаются специальным переключателем на панели прибора.



Рис. 1.22. Измерительные приборы

Цена деления - это значение наименьшего деления шкалы измерительного прибора.

Например, верхний предел измерений ме­дицинского термометра (рис. 1.23) равен 42 °С, нижний - 34 °С, а цена деления шкалы этого термометра составляет 0,1 °С.

Напоминаем: чтобы определить цену де­ления шкалы любого прибора, необходимо разность двух любых значений величин, ука­занных на шкале , разделить на количество де­лений между ними.


Рис. 1.23. Медицинский термометр

  • Подводим итоги

Общая характеристика материальных объектов или явлений, которая может приоб­ретать индивидуальное значение для каждого из них, называется физической величиной.

Измерить физическую величину - значит сравнить ее с однородной величиной, принятой за единицу.

В результате измерений мы получаем зна­чение физических величин.

Говоря о значении физической величины, следует указать ее числовое значение и единицу.

Для измерения физических величин поль­зуются измерительными приборами.

Для сокращения записи числовых значений больших и малых физиче­ских величин используют кратные и дольные единицы. Они образуются с помощью приставок.

  • Контрольные вопросы

1. Дайте определение физической величины. Как вы его понимаете?
2. Что означает измерить физическую величину?

3. Что понимают под значением физической величины?

4. Назовите все физичес­кие величины, упомянутые в отрывке из романа Ж. Верна, приве­денном в тексте параграфа. Каково их числовое значение? единицы измерения?

5. С помощью каких приставок образуются дольные еди­ницы? кратные единицы?

6. Какие характеристики прибора можно установить с помощью шкалы?

7. Что называют ценой деления?

  • Упражнения

1. Назовите известные вам физические величины. Укажите единицы этих величин. Какими приборами их измеряют?

2. На рис. 1.22 изображены некоторые измерительные приборы. Мож­но ли, используя только рисунок, определить цену деления шкал этих приборов. Ответ обоснуйте.

3. Выразите в метрах следующие значения физической величины: 145 мм; 1,5 км; 2 км 32 м.

4. Запишите с помощью кратных или дольных единиц следующие значения физических величин: 0,0000075 м - диаметр красных кровяных телец; 5 900 000 000 000 м - радиус орбиты планеты Плутон; 6 400 000 м - радиус планеты Земля.

5 Определите пределы измерения и цену деления шкал приборов, ко­торые есть у вас дома.

6. Вспомните определение физической величины и докажите, что длина - это физическая величина.

  • Физика и техника в Украине

Один из выдающихся физиков современности - Лев Давидо­вич Ландау (1908- 1968) - продемонстрировал свои способности, еще учась в средней школе. После окончания университета он стажировался у одного из творцов квантовой физики Нильса Бора. Уже в 25-летнем возрасте он возглавил теоретический отдел Украинско­го физико-технического института и кафедру теоретической физики Харьковского университета. Как и большинство выдающихся физиков-теоретиков, Ландау обладал чрезвычайной широтой научных интересов. Ядерная физика, физика плазмы, теория сверхтекучести жидкого гелия, теория сверхпроводимости - во все эти разделы фи­зики Ландау внес значительный вклад. За работы по физике низких температур он был удостоен Нобелевской премии.

Физика. 7 класс: Учебник / Ф. Я. Божинова, Н. М. Кирюхин, Е. А. Кирюхина. - X.: Издательство «Ранок», 2007. - 192 с.: ил.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации 3. Фронтальный опрос

– Ребята, с какими понятиями мы познакомились на прошлом уроке?
– Дома нужно было начертить в тетради таблицу, в которой необходимо распределить по колонкам (физическое тело, вещество, явление) следующие слова: свинец, гром, рельсы, пурга, алюминий, рассвет, буран, Луна, спирт, ножницы, ртуть, снегопад, стол, медь, вертолет, нефть, кипение, метель, выстрел, наводнение.

Заполнение таблицы проверяется устно.

А тем временем один ученик оформляют на доске решение задания по переводу единиц измерения.
После дети сами оценивают правильность выполненного задания.
Самых активных учеников, которые комментировали и отвечали уверенно, правильно и аргументировано, необходимо оценить.
– Третье задание было творческое: подобрать загадки о физических телах, явлениях, веществах.
– Поиграем в игру «Цепочка». Условие игры заключается в следующем: я загадаю вам загадку, а вы не только должны отгадать ее, но и определить: тело, вещество или явление. Кто отгадает, тот зачитывает свою. Кто отгадает загадку одноклассника, тот предлагает свою и т. д. по цепочке. И последнее условие: загадки не повторяются.

Загадка:

Чудо – птица, алый хвост
Полетела в стаю звезд.

– Молодцы!
Оценивание результатов выполнения домашнего задания.
Выставляются отметки в журнал.
Приветствуется оформление творческого задания в виде ребусов, кроссвордов, рисунков.

4. Изучение нового материала

– Ребята, как вы думаете, сколько нам понадобилось времени для проверки домашнего задания?
– А приходилось ли вам в повседневной жизни еще делать измерения? Какие?
– Все эти перечисленные примеры – физические величины. Сегодня на уроке мы подробней познакомимся с ними и научимся их измерять.(Слайд 1 ).
– Запишите в тетради дату и тему урока: «Измерение – основа техники».
– Какие измерительные приборы вам знакомы? Какие величины с их помощью можно измерить? (Слайд 2 )

– Вы, много знаете физических приборов!
– А умеете ли, вы, с их помощью определять величины?
– Проверим?
– Я разделю вас на группы по 5 человек. И каждая группа экспериментально проверит и подтвердит свои знания.
Класс делю на 5 групп с равным количеством детей, но различными навыками и способностями. Т. к. группы разноуровневые, следовательно, нужно подобрать дифференцированные задания: низкий, средний, высокий уровень. (Приложение 3 )
При выполнении эксперимента напоминаю об основных правилах соблюдения техники безопасности: работа с термометрами, с мелкими предметами и с острыми предметами.
Выступающий учащийся (из каждой группы) оценивается, также учитывается правильность выполнения домашнего задания.
– Молодцы!
– Вы все сейчас доказали, что умеете пользоваться измерительными приборами.
– Скажите, для чего нам нужно знать длину и ширину ладони?
– Зачем нам знать, как определять массу тела?

– Где и когда вы еще измеряли температуру?

– Когда еще мы можем измерить объем тела, с помощью линейки?

– Ребята, подумаете, как можно определить объем воздуха в классной комнате?

– Запишем эту формулу в тетрадь.
– А как определить объем кусочка мела? (Показываю мелок).
– Но нас окружают не только тела с правильной геометрической формой. Например, фарфоровый ролик, игрушка «Kinder-surprise», ложка и т. д.
Все предметы демонстрируются.

– Как определить объем тела неправильной формы? Например, игрушки «Kinder-surprise»?

– Объем маленькой игрушки, измеряем физическим прибором – мензуркой.
– Запишите в тетрадь название этого прибора.
– Как измерять объем тела мензуркой? Для этого в мензурку наливают определенное количество воды. Погружают полностью исследуемое тело в мензурку с водой и замечают, что уровень воды увеличился. Разница показаний объемов воды и будет искомая величина – объем тела.
– Запишите формулу в тетрадь:
V = V 1 – V 2 , где V 1 – объем воды в мензурке, а V 2 – объем воды и погруженного в нее тела.
– Кто определит объем медного цилиндра с помощью мензурки?
Нужно учесть следующее: этот эксперимент виден только близ сидящей аудитории. Поэтому демонстрируется слайд 3 (результат проведенного эксперимента).
– Ребята, что общего у всех измерительных приборов? (Слайд 2. Гиперссылка ).
Далее переходим по гиперссылке на слайд 4. Шкала и ее характеристики.
– Рассмотрим один и тот же по назначению прибор, но с разными шкалами. На стр. 9 учебника рис. 11 и 12.
– Ребята, скажите, одинаковы ли показания термометров.
– А какой термометр показывает большую температуру?
– Для того чтобы точно уметь снимать показания с прибора нужно знать его цену деления.
– Запишите в тетради подзаголовок «Цена деления».
– Цена деления – это наименьшее значение физической величины, которое может измерить прибор.
– Для того чтобы правильно определить цену деления существует правило. (Слайд 5 ) Это же правило находим в учебнике.
Учимся определять цену деления шкалы мензурки. (Слайд 6).
– Запишите формулу для определения цены деления:
С = (a – b) / d. (Слайд 7 ).
Учимся определять цену деления шкалы и измерять показания приборов. (Слайды 8, 9 ).

5. Закрепление изученного материала

– Молодцы!
– Ребята, что нового вы сегодня узнали на уроке?

Оценивание тех детей, кто был активным на уроке, с учетом работы в группе.

6. Домашнее задание

– Запишем домашнее задание в дневниках. (Слайд 10 ).
Раздаю карточки с заданиями двух вариантов. (Приложение 4 )
Отвечаю на вопросы детей, если они возникли при знакомстве с заданиями.
На следующем уроке учащиеся проверяют эту работу друг у друга и выставляют оценку на полях карандашом.
– В оставшееся время мы поиграем в «Пойми меня». (Слайд 11 )
– Условие игры: я задаю наводящие утверждения, а ваша задача – догадаться, о чем идет речь как можно раньше. Если ответ верный, то на экране появится отгадка.
– Какую физическую величину с их помощью можно измерить?
– Где еще применяется этот прибор?

– Вторая загадка. (Слайд 12 ).
– Где и для чего применяется этот прибор?

– Третья загадка: (Слайд 13 ).
– Встречали ли вы этот прибор и где?

Самого смекалистого также необходимо оценить.

– Молодцы, всех благодарю за внимание. Всем большое спасибо. (Слайд 14 ).