Переменный электрический ток его параметры. Основные параметры переменного тока. Понятие о токах промышленной, звуковой, высокой и сверхвысокой частот

1. Мгновенное значение - величина тока соответствующая данному моменту времени

2. Амплитуда - максимальное мгновенное значение (наибольшее значение, которого достигает переменный ток).


Здесь амплитуда 20 мА


3. Период - время в течение которого переменный ток совершает полный цикл своих изменений, возвращаясь к исходной величине.

Обозначается буквой Т


кликните по картинке чтобы увеличить

За один период совершается одно колебание переменного тока, т. е. период это время одного колебания. Одно колебание состоит из двух движений тока.

4. Частота - число колебаний переменного тока в секунду

Высокая частота обозначается буквой f

Звуковая частота обозначается F

Единицей измерения частоты является герц, условное обозначение Гц .

Если ток совершает одно колебание в секунду значит частота равна 1 Гц.

На практике применяются кратные единицы частоты - килогерц и мегагерц

1 кГц=1*10 3 Гц; 1мГц= 1*10 6 Гц

По определению период и частота являются взаимно обратными величинами, т. е.

5. Фаза - это состояние переменного тока за определенный период времени


кликните по картинке чтобы увеличить

Переменные величины могут совпадать по фазе. Это значит что они одновременно достигают нулевых значений и одновременно достигают максимальных значений одинаковых направлений.

Здесь токи I1 и I2 совпадают по фазе


кликните по картинке чтобы увеличить

Здесь напряжения U1 и U2 находятся в противофазе.

Это значит что они одновременно достигают нулевых и максимальных значений противоположных направлений.

Если переменные величины не совпадают по фазе, то говорят что они сдвинуты по фазе.

Сдвиг по фазе выражается в градусах или в долях периода. Весь период 360 0 , так как период получается за один полный оборот проводника по окружности в магнитном поле.


кликните по картинке чтобы увеличить

Здесь напряжение отстает от тока на 90 0 , т. е. ток и напряжение сдвинуты по фазе на 90 0 .

Действительно в начале ток уже достиг максимума, а напряжение находится на нуле. Напряжение достигнет максимума через 90 0 .

Сдвиг по фазе обозначается греческой буквой φ например φ=90 0 .

Лекция: 3. ПЕРЕМЕННЫЙ ТОК

План лекции:

1. Основные параметры цепей переменного тока.

2. Конденсатор в цепи переменного тока.

3. Индуктивность в цепи переменного тока.

4. Резонанс в цепи переменного тока.

Цель лекции : усвоение основных положений теории цепей переменного тока и применение их для диагностики и лечения.

1.Основные параметры цепей переменного тока.

Если в замкнутой цепи действует источник с переменной ЭДС, то в цепи возникает колебательное движение электронов. Электронное возмущение от источника ЭДС распространяется вдоль проводника с большой скоростью, в то время как скорость колебательного движения зарядов относительно невелика. Этот процесс можно сравнить, например, с движением железнодорожного состава при трогании.

Согласованное колебательное движение электронов – это, по существу, и есть переменный электрический ток. Ток, изменяющий по тому или иному закону свою величину и направление, называется переменным. Наиболее простым и распространённым является синусоидальный переменный ток, мгновенные значения которого изменяются по закону синуса или косинуса.

i=I 0 sin(t); (1)

Где: i-мгновенное значение тока;

I 0 -амплитудное значение тока;

Действующее значение тока.

График изменений переменного тока по гармоническому закону представлен на рис. 1.

Рассмотрим цепь переменного тока, содержащую только активное сопротивление R, то есть такое, в котором движение электронов приводит к тепловым потерям. Будем решать задачу о законах изменения тока при заданном законе изменения напряжения. Необходимо установить, синхронно ли изменяется ток и напряжение?

Зададим закон изменения напряжения. Пусть напряжение изменяется по закону косинуса:

U=U 0 cos(t). (1)

Будем искать закон изменения тока i=?


Рис1. График изменений синусоидального переменного тока.

I 0 – амплитуда; Т – период.

Рис.2. Активное сопротивление в цепи переменного тока

В теоретических основах электротехники показано, что закон Ома справедлив и для цепей переменного тока вплоть до частот  =10 6 Гц.

Воспользуемся законом Ома и выразим связь между i, U, R


; (2),

Рис. 3. а)График изменения тока и напряжения в цепи с активным сопротивлением. б) Векторная диаграмма для цепи с активным сопротивлением; i – вектор тока, u – вектор напряжения, - направление вращения векторов.

Так как

; то

(3).

Сравнение формулы (1) с формулой (3) показывает, что в цепи переменного тока с активным сопротивлением ток и напряжение изменяются одновременно то есть синфазно. На графике это можно показать следующим образом (см. рис.3).

В электротехнике для отображения этого явления пользуются векторной диаграммой.

2. Конденсор в цепи переменного тока.

Рассмотрим цепь переменного тока с ёмкостью. Считаем, что других сопротивлений в цепи нет. Пусть на входе цепи действует переменное напряжение, которое изменяется по закону косинуса

U=U 0 cost; (4)

Необходимо установить закон изменения тока в цепи с конденсатором. i = ?

Согласно определения емкость это есть отношение заряда к напряжению на ёмкости.

То есть:

; откуда заряд на ёмкостиq=CU; (5).

Рис. 4: Конденсатор в цепи переменного тока.

По определению ток – это есть изменение заряда во времени.

То есть:

(6).

Подставим в формулу (6) вместо заряда qего величину из формулы (5) и так как на конденсаторе действует переменное напряжение, то вместоUв формуле (5) подставим переменное напряжение с заданным законом измененияU=U 0 cost.

В результате имеем:

; (7)

Таким образом для нахождения тока в цепи с конденсатором необходимо найти первую производную от выражения (7).

Постоянные коэффициенты выносим за знак дифференцирования

;

В результате дифференцирования получаем:

i-U 0 Csint; (8)

Так как заданное напряжение изменяется по закону косинуса (см. формулу 4), а ток изменяется по закону синуса (см. формулу 8), то для сравнения этих формул желательно так же выразить изменения тока через косинус.

Тогда имеем:

; (9)

Таким образом сравнение формул (4) и (9) показывает, что ток в цепи с ёмкостью опережает напряжение по фазе на угол /2.

В полученной формуле (9) коэффициенты стоящие перед косинусом представляют собой амплитуду тока, то есть I 0 ;

Тогда I 0 = U 0 С; (10)

Формула (10) по существу представляет собой запись закона Ома, так как связь между током и напряжением такова, что величина


; (11), имеет смысл сопротивления.

X С – называется реактивным ёмкостным сопротивлением. Оно не ведёт к тепловым потерям.

Определим размерность ёмкостного сопротивления:


(11).

Таким образом ёмкостное сопротивление так же как обычное измеряется в Омах.

В цепях постоянного тока X   то есть конденсатор является разрывом в цепи. В цепи переменного тока токи проводимости продолжают токи смещения диэлектрика конденсатора. Токи смещения в конденсаторе обусловлены колебательными движениями связанных зарядов в диэлектрике.

Отставание фазы напряжения от фазы тока в электротехнике принято отображать векторными диаграммами.

Рис5. Векторная диаграмма для цепи с конденсатором.

Построение векторной диаграммы начинают с изображения вектора тока I 0 . Затем указывают направление вращения вектора тока I 0 . Вектор тока I 0 вращается со скоростью против часовой стрелки. При построении вектора напряжения необходимо учитывать его отставание от вектора тока на угол 90 0 .

Построим векторную диаграмму для цепи с конденсатором.

Напряжение на ёмкости, при отсутствии активных потерь, отстаёт от тока на угол .

3. Индуктивность в цепи переменного тока.

Рассмотрим индуктивность в цепи переменного тока. Исследуем, что произойдёт с током в цепи, если напряжение на входе изменяется по закону косинуса:

U =U 0 cos t; (12).

Рис6. Индуктивность включена в цепь переменного тока.

Известно, что ЭДС самоиндукции зависит от индуктивности L и скорости изменения тока, и определяется известной вам формулой

.

Теперь обратим внимание на то, что внешний источник напряжения и ЭДС самоиндукции включены параллельно. Следовательно, в соответствии со вторым законом Кирхгофа «Сумма падений напряжений в последовательной замкнутой цепи равна нулю.» можно составить уравнение.

Имеем уравнение:

; (13).

Это дифференциальное уравнение 1 порядка. Переменные параметры: ток I и время t.

Для решения уравнения (13) необходимо разделить переменные и проинтегрировать.

Проведём разделение переменных:

;


;

;

Проинтегрируем и имеем:

; (14).

Заданное напряжение на входе (12) изменяется по закону косинуса, а ток в формуле (14) изменяется по закону синуса.

Для анализа формул (12) и (14) выразим, воспользуясь тригонометрическими преобразованиями, изменения тока так же через косинус.

Тогда окончательно имеем:

; (15).

Сравнение формул (12) и (15) показывает, что напряжение и ток в цепи с индуктивностью изменяются по закону косинуса.

При этом видно, что в цепи с индуктивностью отстаёт от напряжения по фазе на угол/2. Изобразим это на векторной диаграмме.

Рис.6. Векторная диаграмма для изменений напряжения и тока в цепи с индуктивностью.

Задерживание фазы тока на индуктивности обусловлено воздействием ЭДС самоиндукции. В формуле (15) коэффициенты, стоящие перед cos играют роль амплитудного значения тока.

То есть

; (16)

Формула (16) представляет собой запись закона Ома. В этой формуле роль сопротивления играют члены, стоящие в знаменателе. Следовательно, можно записать, что X L =L; (17).

X L – это реактивное индуктивное сопротивление. Оно не связано

с тепловыми потерями энергии. И его величина зависит от частоты и индуктивности.

Определим размерность индуктивного сопротивления X L по формуле (17).

Для определения размерности индуктивности и воспользуемся известной формулой для определения ЭДС самоиндукции

Откуда

или

;

Тогда:

;

Таким образом индуктивное сопротивление X L также как и активноеRи емкостноеX C измеряются в Омах.

4. Резонанс в цепи переменного тока.

Рассмотрим полную цепь переменного тока, содержащую последовательно включённые активное сопротивление R, индуктивность L, конденсатор C. Найдём выражение для полного сопротивления цепи.

Рис7. Схема последовательного соединения резистора R, конденсатора С и индуктивности L в цепи переменного тока.

Так как цепь последовательная, то в цепи образуется общий ток

i = I 0 cos (t  ).

Приложенное напряжение U=U 0 cost распределяется между участками цепи пропорционально сопротивлению отдельных элементов.

Тогда в соответствии с законом Ома падение напряжения на отдельных элементах будет определяться формулами:

Но так как между напряжениями U C и U L и током I существует разность фаз, то эти напряжения должны складываться как вектора.

Строим векторную диаграмму.

U результ =

Пользуясь правилом сложения векторов найдём результирующий вектор U результ.

Рис.8. Векторная диаграмма для последовательно соединения

В результате сложения мы получили характерный треугольник напряжений. Так как в последовательной цепи ток одинаков, то можно от треугольника напряжений перейти к треугольнику сопротивлений. По теореме Пифагора результирующее падение напряжения в цепи будет определяться:


;


; (18).

Где: Z - полное сопротивление цепи переменного тока или импеданс.

Рассмотрим резонанс напряжений в цепи переменного тока. Анализ формулы (18) показывает, что в последовательной цепи ток будет наибольшим, а сопротивление наименьшим в случае,

если X С = X L ; то есть

; (19).

Это условие резонанса напряжений. Из формулы (19) можно получить: 2 L C =1; (20).

Решая уравнение (20) относительно  получим известную формулу Томпсона для определения резонансной частоты колебательного контура

;

При резонансе в последовательной цепи происходит взаимная компенсация напряжений U L и U C каждое из которых может значительно превышать приложенное к цепи напряжение U. При этом апряжения U L и U C равны по величине, а их векторы направлены по одной прямой в противоположные стороны.

Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:

Период T - время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.

Частота f - величина, обратная периоду, равная количеству периодов за одну секунду.
Один период в секунду это один герц (1 Hz)

f = 1/T

Циклическая частота ω - угловая частота, равная количеству периодов за секунд.

ω = 2πf = 2π/T

Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°

Начальная фаза ψ - величина угла от нуля (ωt = 0) до начала периода. Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.

Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.

Мгновенное значение - величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени t .

i = i(t); u = u(t)

Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени.
Например, синусоидальный ток или напряжение можно выразить функцией:

i = I amp sin(ωt); u = U amp sin(ωt)

С учётом начальной фазы:

i = I amp sin(ωt + ψ); u = U amp sin(ωt + ψ)

Здесь I amp и U amp - амплитудные значения тока и напряжения.

Амплитудное значение - максимальное по модулю мгновенное значение за период.

I amp = max|i(t)|; U amp = max|u(t)|

Может быть положительным и отрицательным в зависимости от положения относительно нуля.
Часто вместо амплитудного значения применяется термин амплитуда тока (напряжения) - максимальное отклонение от нулевого значения.

Среднее значение (avg) - определяется как среднеарифметическое всех мгновенных значений за период T .

Среднее значение является постоянной составляющей DC напряжения и тока.
Для синусоидального тока (напряжения) среднее значение равно нулю.

Средневыпрямленное значение - среднеарифметическое модулей всех мгновенных значений за период.

Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод.

Среднеквадратичное значение (rms) - определяется как квадратный корень из среднеарифметического квадратов всех мгновенных значений за период.

Для синусоидального тока и напряжения амплитудой I amp (U amp ) среднеквадратичное значение определится из расчёта:

Среднеквадратичное - это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов. Является объективным количественным показателем для любой формы тока.
В активной нагрузке переменный ток совершает такую же работу за время периода, что и равный по величине его среднеквадратичному значению постоянный ток.

Принцип получения переменного тока. Простейшим генератором переменного тока может служить виток, вращающийся в равномерном магнитном поле (рис. 168, а). Пользуясь правилом правой руки, легко определить, что в процессе вращения витка направление э. д.с. е, индуцированной в рабочих участках 1 и 2 витка, непрерывно изменяется (показано стрелками), следовательно, изменяется и направление проходящего по замкнутой цепи тока i.

По закону электромагнитной индукции э. д. с, индуцируемая в витке при вращении его с окружной скоростью? в магнитном поле с индукцией В,

2l - длина двух рабочих частей витка, находящихся в магнитном поле;

Угол между направлением силовых магнитных линий и направлением движения витка в рассматриваемый момент времени (направлением вектора скорости?).

При вращении витка с угловой скоростью? угол? = ?t, следовательно,

e = 2lBv sin ?t.

Переменный угол? t называется фазой э. д. с. Величина 2lB ? представляет собой максимальное значение э. д. с. е, которое она принимает при?t = 90° (когда плоскость витка перпендикулярна силовым магнитным линиям). Обозначив его Eт получим:

е = Е т sin ?t.

Полученная зависимость изменения э. д. с. е от угла?t или от времени t графически изображается синусоидой (рис. 168,б). Э. д. с, токи и напряжения, изменяющие свои значения и направления по закону синусоиды, называются синусоидальными . Ось, по которой откладывают углы? t, можно рассматривать как ось времени t.

Рассмотрим несколько отдельных положений витка. В момент времени, соответствующий углу?t 1 (см. рис. 168, а), когда виток находится в горизонтальном положении, его рабочие участки как бы скользят вдоль силовых магнитных линий, не пересекая их; поэтому в этот момент э. д. с. в них не индуцируется (точка 1 на рис. 168,б). При дальнейшем повороте витка стороны его начнут пересекать магнитные силовые линии. По мере увеличения угла поворота увеличивается и число силовых линий, пересекаемых сторонами витка в единицу времени, и соответственно возрастает индуцированная в витке э. д. с е.

В момент времени, соответствующий углу?t 2 , виток пересекает наибольшее число силовых магнитных линий, так как его рабочие участки 1 и 2 движутся перпендикулярно силовым линиям магнитного поля; в этот момент э. д. с. е достигает своего максимального значения Е т (точка 2 на графике). При дальнейшем вращении витка число пересекаемых силовых линий уменьшается и соответственно уменьшается индуцированная в витке э. д. с. В момент времени, соответствующий углу рабочие участки витка опять как бы скользят вдоль магнитных силовых линий, в результате чего э. д. с. е будет равна нулю (точка 3). Затем рабочие участки 1 и 2 витка вновь начинают пересекать магнитные силовые линии, но уже в другом направлении, поэтому в витке появляется э. д. с. противоположного направления. В момент времени, соответствующий углу?t 4 . при вертикальном расположении витка э. д. с. в достигает максимального значения - Е т (точка 4), затем она уменьшается, и в момент времени, соответствующий?t5, снова становится равной нулю (точка 5). При дальнейшем движении витка с каждым

Рис. 168. Индуцирование синусоидальной э. д. с. (а) и кривая ее изменения (б)

новым оборотом описанный выше процесс индуцирования э. д. с. будет повторяться.

В современных генераторах переменного тока магниты или электромагниты, создающие магнитное поле, обычно располагаются на вращающейся части машины - роторе , а витки, в которых индуцируется переменная э. д. с,- на неподвижной части генератора - статоре . Однако с точки зрения принципа действия генератора переменного тока безразлично, на какой части машины - роторе или статоре - расположены витки, в которых индуцируется переменная э. д. с.

При изучении цепей постоянного тока мы установили, что все проводники обладают электрическим сопротивлением, на преодоление которого затрачивается определенное количество электрической энергии. В цепях переменного тока мы встречаемся с несколькими видами сопротивлений, различающихся своей физической природой. Все эти сопротивления можно подразделить на две

Рис. 174. Условные обозначения основных элементов электрических цепей переменного тока

основные группы: активные и реактивные. В активных сопротивлениях при включении в цепь переменного тока электрическая энергия преобразуется в тепловую . Активным сопротивлением R обладают, например, провода электрических линий, обмотки электрических машин и аппаратов и пр., т. е. те же устройства, которые обладают электрическим сопротивлением в цепи постоянного тока. В реактивных сопротивлениях электрическая энергия, вырабатываемая источниками, не расходуется. Как будет показано ниже, при включении реактивного сопротивления в цепь переменного тока возникает лишь обмен энергией между ним и источником электрической энергии.

Реактивное сопротивление создают индуктивности и емкости. Под индуктивностью L будем понимать идеализированный элемент электрической цепи (идеализированную катушку индуктивности), способный запасать энергию в своем магнитном поле, который не имеет активного сопротивления R и емкости С. Аналогично под емкостью С будем понимать идеализированный элемент электрической цепи (идеализированный конденсатор), способный запасать энергию в своем электрическом поле, который не имеет активного сопротивления R и индуктивности L.

При проведении расчетов реальные катушки индуктивности и конденсаторы, в которых имеются потери мощности (из-за наличия активного сопротивления R), часто могут быть заменены с некоторым приближением этими идеализированными элементами, так как переменный ток, проходящий через реальную катушку индуктивности при заданном напряжении и частоте, определяется в основном ее индуктивностью L, а ток, проходящий через реальный конденсатор,-его емкостью С. На рис. 174, а-г стрелками показаны условные положительные направления в идеализированных элементах электрической цепи тока i, напряжения и и э. д. с.

Рассмотрим цепь (фиг. 140), состоящую из сопротивления г. Влиянием индуктивности и емкости для простоты пренебрегаем.

К зажимам цепи приложено синусоидальное напряжение

По закону Ома мгновенное значение тока будет равно:

или, переходя к действующим значениям, получаем:

Как следует из последнего выражения, вид закона Ома для цепи переменного тока, содержащей сопротивление, тот же, что для цепи постоянного тока. Кроме того, из закона Ома вид-на пропорциональность между мгновенным значением напряжения и мгновенным значением тока. Отсюда следует, что в цепи переменного тока, содержащей сопротивление г, напряжение и ток совпадают по фазе. На фиг. 141 даны кривые напряжения и тока и векторная диаграмма для рассматриваемой цепи, причем длины векторов обозначают действующие значения напряжения и тока. Сопротивление проводников переменному току несколько больше их сопротивления постоянному току. Это объясняется поверхностным эффектом, сущность которого изложена в 87. Поэтому сопротивление проводников переменному току называют активным. Обозначается оно также буквой r.

В цепи, представленной на фиг. 140, приложенное внешнее напряжение уравновешивается падением напряжения в сопротивлении r, которое называется активным падением напряжения и обозначается U a

Мгновенное значение мощности в рассматриваемой цепи равно произведению мгновенных значений напряжения и тока:

На фиг. 142 дана кривая мгновенной мощности за один период. Из чертежа видно, что мощность не является постоянной величиной, она пульсирует с двойной частотой.

Среднее за период значение мощности или просто средняя мощность обозначается буквой Р и может быть определена по формуле, доказательство которой мы не приводим:

где - угол сдвига фаз между напряжением и током.

Средняя мощность называется также активной мощностью. Данная формула активной мощности справедлива для любых цепей переменного тока.

Для цепи с активным сопротивлением напряжение и ток совпадают по фазе. Поэтому угол равен нулю, a cos =1. Для активной мощности получим:

т. е. формула мощности для цепи переменного тока с активным сопротивлением такая же, как формула мощности для цепи постоянного тока. Активным сопротивлением обладают все проводники. В цепи переменного тока практически только одним активным сопротивлением обладают нити ламп накаливания, спирали электронагревательных приборов и реостатов, дуговые лампы, специальные бифилярные обмотки и прямолинейные проводники небольшой длины

Если в цепь переменного тока включена идеальная индуктивность, то в момент времени, когда возрастает мгновенное значение силы тока, протекающего от источника, энергия источника расходуется на образование магнитного поля в индуктивности без превращения ее в тепловую или механическую энергию. В момент времени, когда мгновенное значение силы тока убывает, магнитное поле рассеивается, и запасенная в нем энергия отдается обратно источнику.

Покажем это аналитически и графически. Пусть к источнику переменного тока подключена катушка индуктивностью L (рис. 6.6, а).

Примем, что ее активное сопротивление R равно нулю. В катушке будет протекать переменный синусоидальный ток

i = I m sin ωt.

Этот ток сопровождается переменным синусоидальным магнитным потоком, совпадающим с ним по фазе. Переменный магнитный поток, образующийся в катушке, индуктирует э. д. с. самоиндукции eL, пропорциональную скорости изменения тока (потока), аналогично формуле(5.10):

e L = - L -- , (6.14)

где e L - э.д.с. самоиндукции, B; ∆i/∆t - скорость изменения тока, А/с; L - индуктивность катушки в, Г.

Знак минус отражает правило Ленца, которое в данном случае означает, что если мгновенное значение тока увеличивается (то есть его приращение за время ∆t имеет положительный знак: + ∆i - точки 1 и 5 на рисунке 6.6, б), то мгновенное значение э.д.с. будет иметь отрицательный знак: - L (+∆i/∆t) =-e L . Если же мгновенное значение тока уменьшается (то есть его приращение за время At имеет отрицательный знак: -Ai - точки 3 и 4 на рисунке 6.6,6), то э. д. с. имеет положительный знак: - L (-∆i/ ∆t) = + e L .

Таким образом, исходя из этих соображений, можно построить кривую мгновенных значений э. д. с. самоиндукции на основании имеющейся развернутой диаграммы тока.

Как показано на рисунке 6.6, б, в момент времени, соответствующий точке 1, приращение тока положительное: +i 2 -(+ i 1)=+∆i 1 . В момент времени 5 это приращение также положительное: +∆i 5 . Следовательно, мгновенные значения э.д.с. в эти моменты отрицательные: -e 1 и -е 5 . В момент времени 2 приращение тока равно нулю: ∆i 2 = i 4 -i 3 = 0, поэтому и э.д.с. е 2 равна нулю, то есть в этот момент график э.д.с. проходит через нуль и меняет свой знак с минуса на плюс. В моменты времени, соответствующие точкам 3 и 4, приращение токов Ai3 и Ai4 отрицательно (например, для точки 3: i 6 - i 5 =-∆i 3). В эти моменты времени знаки э.д.с. положительны (+е 3 и +е 4).

Применяя второй закон Кирхгофа для цепи, изображенной на рисунке 6.6, а, и принимая во внимание, что в этой цепи действует напряжение источника и и э.д.с. самоиндукции e L , можно написать:

u + e L = 0 или e L = -u. (6.15)

Значит, развернутая диаграмма напряжения будет зеркальным отображением развернутой диаграммы э.д.с, так как только в этом случае в каждый момент времени сумма значений э.д.с. и напряжений равна нулю.

Теперь по развернутой диаграмме напряжения и тока можно построить векторную диаграмму их максимальных значений, например для начального момента времени (рис. 6.6, в). Из векторной диаграммы видно, что в цепи с индуктивностью ток отстает от напряжения на угол φ = 90° = Π /2 рад. В соответствии с графиком, то есть если ток определяется равенством i = I sinωt, напряжение u = U m sin(ωt + Π /2). Это можно показать и аналитически. А именно, из формул (6.14) и (6.15).

u = - е= L∆i/∆t. (6.16)

Чтобы перейти к действующим значениям U и I, в этой формуле необходимо раскрыть значение ∆i/∆t. Это представляется возможным сделать с привлечением аппарата тригонометрии. Если в момент времени t мгновенное значение силы тока i = I sin ωt, то для момента времени t + ∆t (∆t - весьма малый, близкий к нулю, отрезок времени) ток изменится на весьма малую величину ∆i и будет равен:

i + ∆i = I m sin ω(t + ∆t).

Преобразуя это равенство относительно ∆i, получим:

∆i = I m sin (ωt + ω∆t)- l = I m sin(ωt + ω∆t)-I m sin ωt = I m = I m . (6.17)

В этом выражении угол ω∆t очень незначителен, так как ∆t по условию весьма малая величина. Тогда cosω∆t ≈ cos 0 = 1, a sin ω∆t ≈ ω∆t. Подставляя эти значения в формулу (6.17), получим:

∆i = I m (sinωt 1 + cosωt ω∆t-sinωt) = I m ω∆t cosωt,

∆i/ ∆t = I m ωcosωt = I m sin(ωt + Π/2).

Напряжение на индуктивности

u = L∆i/∆t = I m Lsin(ωt + Π/2) = U m sin(ωt + Π/2) . (6.18)

Из формулы (6.18) следует, что максимальное значение напряжения на индуктивности

Um = Im ω L.

Поделив обе части этого равенства на √ 2 перейдем к действующим значениям тока и напряжения в цепи с индуктивностью:

-- = --- ω L ,

.√ 2 √2

U = Iω L = I X L

I = --- = --- ,

. ω L X L

где X L = U/I- индуктивное сопротивление.

Размерность индуктивного сопротивления - Ом:

[Х] = [ω][L] = 1/c Г = 1/с Ом с = Ом.

Индуктивное сопротивление в отличие от активного называют реактивным , то есть таким, в котором происходит обратимый процесс колебания энергии от источника электрической энергии к катушке индуктивности и обратно. Равенство (6.19) выражает закон Ома для цепи с индуктивной нагрузкой .

Мгновенная мощность в катушке в любой момент времени

Р = ui = U m sin(ωt + Π/2)I m sin ωt = U m I m cos ωt sin ωt,

а учитывая, что

2 sin ωt cos ωt = sin2ωt,

cosωt sinωt = sin2ωt/2,

P = U m I m /2 sin2ωt = U m I m /√2√2 sin 2ωt,

P = U I sin 2ωt . (6.20)

Таким образом, мгновенная мощность цепи с индуктивным сопротивлением изменяется с двойной частотой, в течение периода 2 раза достигая положительного максимума (рис. 6.6, г, моменты времени 2 и б) и 2 раза отрицательного максимума при том же абсолютном значении (моменты времени 4 и 8). В течение полупериодов I и III индуктивность потребляет от генератора мощность на образование магнитного поля. В течение полупериодов II н IV мощность имеет отрицательный знак. В эти полупериоды ток в цепи уменьшается до нуля и запасенная в магнитном поле индуктивной катушки энергия возвращается обратно в источник.

Положительным мгновенное значение мощности р в полуперирд I получается благодаря тому, что ток +i и напряжение +u в этот момент положительны (обе кривые лежат выше оси ωt). Для полупериода II ток положителен (+ i), а напряжение отрицательно (-u), поэтому мощность имеет отрицательный знак. Для полупериода III ток и напряжение имеют знак минус (-i, -u) и т. д.

Кривую мгновенных значений мощности можно было бы получить также графическим путем. При этом нужно найти мгновенные значения мощности для ряда точек (1, 2, У)- произведения мгновенных значений u и i, как это было проведено для цепи с активным сопротивлением.

Среднее значение мощности за период в соответствии с рисунком 6.6, г равно нулю, так как при сложении всех положительных и отрицательных значений мгновенной мощности р, изменяющейся по синусоиде, получается сумма, равная нулю. Другими словами, в цепи с индуктивностью происходит периодический обмен энергией между генератором и индуктивностью цепи без превращения электрической энергии в тепловую или механическую. Энергия магнитного поля в джоулях, запасаемая за четверть периода,

W m = L I m 2 /2, (6.21)

где L - индуктивность катушки, Г; I m - максимальная сила тока, А .

Во время полупериодов II к IV катушка отдает запасенную магнитным полем энергию обратно источнику. Мера обмена энергией между источником и индуктивной катушкой - это максимальное значение мгновенной мощности, называемоереактивной мощностью :

Q L = UI = I 2 X L = ω LI 2 , (6.22)

где U - действующее значение напряжения, определяемое по показанию вольтметра, В; I - действующее значение реактивного тока, А; ω - угловая частота, рад/с; L - индуктивность катушки, Г.

Реактивную мощность в отличие от активной измеряют в вольт-амперах, называемых реактивными вольт-метрами:

1 вольт-ампер реактивный (1 вар) = 1 вольт 1 ампер.

Ток и напряжение. В цепи постоянного тока емкость (идеальный конденсатор) имеет сопротивление бесконечно большое, так как после окончания процесса заряда такой конденсатор не пропускает электрический ток. Однако при подключении емкости к источнику переменного тока (рис. 191,а) происходит непрерывный процесс его заряда и разряда, при этом через емкость проходит переменный ток.

Ток i при включении в цепь переменного тока емкости определяется количеством электричества q, проходящим по этой цепи в единицу времени. Следовательно,

i = ?q / ?t

где?q - изменение количества электричества (заряда q) за время?t.

Количество электричества q, накопленное в конденсаторе при изменении напряжения и, также непрерывно изменяется. Поэтому, учитывая формулу (69), будем иметь:

i = C ?u / ?t

где?u - изменение напряжения и за время?t.

Из рис. 191,б видно, что скорость изменения напряжения?u/?t будет наибольшей в моменты времени, когда угол?t равен 0; 180 и 360°. Следовательно, в эти моменты времени ток i имеет максимальное значение. В моменты же времени, когда угол?t равен 90° и 270°, скорость изменения напряжения?u/?t = 0 и поэтому i = 0.

В течение первой четверти периода происходит заряд емкости и в цепи течет ток заряда, который считаем положительным. При этом по мере заряда емкости и увеличения разности потенциалов на электродах ток i уменьшается. При?t = 90° емкость полностью заряжается, разность потенциалов на электродах становится равной напряжению и источника и ток i = 0.

Во второй четверти периода емкость начнет разряжаться и ток i изменяет свое направление (становится отрицательным). При

Рис. 191. Схема включения в цепь переменного тока емкости (а), кривые тока i напряжения u (б) и векторная диаграмма (в)

T =180°, когда u = 0, ток i разряда достигает максимального значения. В этот момент изменяется полярность напряжения и источника и начинается процесс перезаряда емкости при противоположном (отрицательном) направлении тока i. При со/ = 270° заряд прекращается, ток i становится равным нулю и начинается разряд при первоначальном (положительном) направлении тока.

Таким образом, емкость в течение одного периода изменения напряжения и дважды заряжается и дважды разряжается. Следовательно, в цепи (см. рис. 191, а) непрерывно протекает переменный ток i. Из рис. 191,б видно, что при включении в цепь переменного тока емкости ток i опережает по фазе напряжение и на угол 90° или же что напряжение и отстает по фазе от тока i на угол 90° (рис. 191,в).

Емкостное сопротивление. Сопротивление, которое оказывает емкость переменному току, называют емкостным. Оно обозначается X с и измеряется в омах. Физически емкостное сопротивление обусловлено действием э. д. с. е с, возникающей в конденсаторе С. Эта э. д. с. направлена против приложенного напряжения u, так как заряженный конденсатор можно рассматривать как источник с некоторой э. д. с. е с, действующей между его пластинами. Поэтому э. д. с. е с препятствует изменению тока под действием напряжения u, т. е. оказывает прохождению переменного тока определенное сопротивление.

Из формулы (70) следует, что чем больше емкость С и скорость изменения напряжения?u/?t, т. е. частота его изменения f (значение?), тем больше ток i в цепи с емкостью и тем меньше емкостное сопротивление:

X с = 1 /(?C)

Закон Ома для цепи с емкостью:

I = U / X с = U / (1 /(?C))

Электрическая мощность. Рассмотрим, как изменяется электрическая мощность в цепи переменного тока с емкостью. Ее можнополучить графическим путем, перемножая ординаты кривых тока и напряжения при различных углах?t. Кривая мгновенной мощности (см. рис. 179,б) представляет собой синусоиду, которая изменяется с двойной частотой 2? по сравнению с частотой изменения тока i и напряжения u. Следовательно, в этой цепи тоже имеет место непрерывный колебательный процесс обмена энергией между источником и емкостью. В первую и третью четверти периода мощность положительна, т. е. конденсатор получает энергию W от источника и накапливает ее в своем электрическом поле. Во вторую и четвертую четверть периода конденсатор отдает накопленную энергию источнику (мощность отрицательна); при этом протекание тока по цепи поддерживается э. д. с. е с. В целом за период в емкостное сопротивление не поступает электрическая энергия (среднее значение мощности за период равно нулю). Поэтому емкостное сопротивление, так же как и индуктивное, относят к группе реактивных сопротивлений.

Для характеристики процесса обмена энергией между источником и емкостью введено понятиереактивной мощности емкости :

Q с = U с I

где U с - напряжение, приложенное к конденсатору (действующее значение) .

Эту мощность можно выразить также в виде

Q с = U 2 с / X с или Q с = I 2 X с

Следует отметить, что в реальных конденсаторах имеют место потери мощности, вследствие чего они потребляют от источника некоторую электрическую энергию. Потери мощности вызваны тем, что в диэлектрике, разделяющем пластины конденсатора, под действием переменного электрического поля возникают токи смещения, нагревающие диэлектрик. Чем больше напряжение и частота его изменения, тем больше потери мощности в конденсаторах от токов смещения. Однако эти потери имеют значение только в конденсаторах, применяемых в высокочастотных установках. При стандартной частоте 50 Гц потери в конденсаторах настолько малы, что их обычно не учитывают.

При подключении к источнику переменного тока с синусоидально изменяющейся э. д. с. электрических цепей с линейными сопротивлениями в них будут действовать синусоидально изменяющиеся напряжения и проходить синусоидально изменяющиеся токи. Переменные токи, э. д. с. и напряжения характеризуются четырьмя основными параметрами: периодом, частотой, амплитудой и действующим значением.

Период. Промежуток времени, в течение которого э. д. с, напряжение и или ток совершают полный цикл изменений, называется периодом. Чем быстрее вращается виток или ротор генератора переменного тока, тем меньше период изменения э. д. с. или тока.

Частота. Число полных периодов изменения э. д. с, напряжения или тока в 1 с называется частотой,

f = 1 / T

Она измеряется в герцах (Гц), т. е. числом периодов в секунду. Чем больше частота, тем меньше период изменения тока, напряжения или э. д. с. . В Советском Союзе все электрические станции переменного тока вырабатывают ток, изменяющийся с частотой 50 Гц, т. е. 50 периодов в секунду. В автоматике и радиотехнике применяют электрические токи и более высоких частот. Такие частоты измеряются в килогерцах (1 кГц=10 3 Гц) и мегагерцах (1 МГц=10 6 Гц).

Амплитуда. Наибольшее значение переменного тока (переменных э. д. с. и напряжения) называют амплитудным значением, или амплитудой.

Действующее значение . Ток, напряжение и э. д. с, действующие в электрической цепи в каждый отдельный момент времени, определяются так называемыми мгновенными значениями.Однако судить о переменных э. д. с, токе или напряжении по их мгновенным значениям неудобно, так как эти значения непрерывно меняются. Поэтому оценивать способность переменного тока совершать механическую работу или создавать тепло принято по действующему его значению. Под действующим значением переменного тока понимают силу такого постоянного тока, который, проходя по проводнику в течение некоторого времени, выделит в нем такое же количество тепла, как и данный переменный ток .Действующие значения тока, напряжения и э. д. с. обозначают соответственно I, U, Е.

19.Действующим (эффективным) значением силы переменного тока называют величину постоянного тока, действие которого произведёт такую же работу (тепловой или электродинамический эффект), что и рассматриваемый переменный ток за время одного периода. В современной литературе чаще используется математическое определение этой величины - среднеквадратичное значение силы переменного тока.

Иначе говоря, действующее значение тока можно определить по формуле:

Для гармонических колебаний тока

Аналогичным образом определяются действующие значения ЭДС и напряжения.

21. АКТИВНОЕ СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА

Сопротивление, включенное в цепь переменного тока, в котором происходит превращение электрической энергии в полезную рабо­ту или в тепловую энергию, называется активным сопротивлением .

К активным сопротивлениям при промышленной частоте (50 гц) относятся, например, электрические лампы накаливания и электро­нагревательные устройства.


Рассмотрим цепь переменного тока (рис. 53), в которую вклю­чено активное сопротивление. В такой цепи под действием перемен­ного напряжения протекает переменный ток. Изменение тока в Цепи, согласно закону Ома, зависит только от изменения напряже­ния, подключенного к ее зажимам. Когда напряжение равно нулю, ток в цепи также равен нулю. По мере увеличения напряжения ток в Цепи возрастает и при максимальном значении напряжения ток становится наибольшим. При уменьшении напряжения ток убывает. Когда напряжение изменяет свое направление, ток также изменяет свое направление и т. д.

Из сказанного следует, что в цепи переменного тока с актив­ным сопротивлением по мере изменения по величине и направлению напряжения одновременно пропорционально меняются величина и Направление тока. Это значит, что ток и напряжение совпадают по фазе.

Построим векторную диаграмму действующих величин тока и напряжения для цепи с активным сопротивлением. Для этого отлов жим в выбранном масштабе по горизонтали вектор напряжения Чтобы на векторной диаграмме показать, что напряжение и ток в цепи совпадают по фазе (j=0), откладываем вектор тока I по направлению вектора напряжения.

Сила тока в такой цепи определяется по закону Ома:

В этой цепи среднее значение мощности, потребляемой активным сопротивлением, выражается произведением действующих значения тока и напряжения.

Емкостное сопротивление в цепи переменного тока
При включении конденсатора в цепь постоянного напряже­ния сила тока I=0, а при включении конденсатора в цепь пере­менного напряжения сила тока I ? 0. Следовательно, конденса­тор в цепи переменного напряжения создает сопротивление меньше, чем в цепи постоянного тока.
Мгновенное значение напряжения равно . Мгновенное значение силы тока равно: Таким образом, колебания напряжения отстают от колебаний тока по фазе на π/2.
Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению, то для максимальных значений тока и напряжения получим: , где - емкостное сопротивление.
Емкостное сопротивление не является характеристикой проводника, т.к. зависит от параметров цепи (частоты).
Чем больше частота переменного тока, тем лучше пропускает конденсатор ток (тем меньше сопротивление конденсатора переменному току).
Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и емкостной нагрузкой. Такая нагрузка наз. реактивной.
22. Индуктивное сопротивление в цепи переменного тока
В катушке, включенной в цепь переменного напряжения, си­ла тока меньше силы тока в цепи постоянного напряжения для этой же катушки. Следовательно, катушка в цепи переменного напряжения создает большее сопротивление, чем в цепи посто­янного напряжения.
Мгновенное значение силы тока:
Мгновенное значение напряжения можно установить, учиты­вая, что u = - ε i , где u – мгновенное значение напряжения, а ε i – мгновенное значение эдс самоиндукции, т. е. при изменении тока в цепи возникает ЭДС самоиндукции, которая в соответствии с законом электромагнитной индукции и правилом Ленца равна по величине и противоположна по фазе приложенному напряжению.
. Следовательно , где амплитуда напряжения. Напряжение опережает ток по фазе на π/2.
Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению и обратно пропорциональная сопротивлению, то приняв величину ωL за сопротивление катушки переменному току, получим: - закон Ома для цепи с чисто индуктивной нагрузкой.
Величина - индуктивное сопротивление.
Т.о. в любое мгновение времени изменению силы тока противодействует ЭДС самоиндукции. ЭДС самоиндукции - причина индуктивного сопротивления.
В отличие от активного сопротивления, индуктивное не является характеристикой проводника, т.к. зависит от параметров цепи (частоты): чем больше частота переменного тока, тем больше сопротивление, которое ему оказывает катушка.
Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и индуктивной нагрузкой. Такая нагрузка наз. реактивной.

25. Резонанс напряжений - резонанс, происходящий в последовательном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура.

Описание явления:

Пусть имеется колебательный контур с частотой собственных колебаний f , и пусть внутри него работает генератор переменного тока такой же частоты f .

В начальный момент конденсатор контура разряжен, генератор не работает. После включения напряжение на генераторе начинает возрастать, заряжая конденсатор. Катушка в первое мгновение не пропускает ток из-за ЭДС самоиндукции. Напряжение на генераторе достигает максимума, заряжая до такого же напряжения конденсатор.

Далее: так как магнитное поле не может существовать стационарно, оно начинает уменьшаться, пересекая витки катушки в обратном направлении. На выводах катушки появляется ЭДС индукции, которое начинает перезаряжать конденсатор. В цепи колебательного контура течет ток, только уже противоположно току заряда, так как витки пересекаются полем в обратном направлении. Обкладки конденсатора перезаряжаются зарядами, противоположными первоначальным. Одновременно растет напряжение на генераторе противоположного знака, причем с той же скоростью, с какой катушка заряжает конденсатор.)

Возникла следующая ситуация. Конденсатор и генератор соединены последовательно и на обоих напряжение, равное напряжению генератора. При последовательном соединении источников питания их напряжения складываются.

Следовательно, в следующем полупериоде на катушку пойдет удвоенное напряжение (и от генератора, и от конденсатора), и колебания в контуре будут происходить при удвоенном напряжении на катушке.

В контурах с низкой добротностью напряжение на катушке будет ниже удвоенного, так как часть энергии будет рассеиваться (на излучение, на нагрев) и энергия конденсатора не перейдет полностью в энергию катушки). Соединены как бы последовательно генератор и часть конденсатора.

27. Коэффицие́нт мо́щности - безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.

Численно коэффициент мощности равен косинусу этого фазового сдвига.

Можно показать, что если источник синусоидального тока (например, розетка ~220 В, 50 Гц) нагрузить на нагрузку, в которой ток опережает или отстаёт по фазе на некоторый угол от напряжения, то на внутреннем активном сопротивлении источника выделяется повышенная мощность. На практике это означает, что при работе на нагрузку со сдвинутыми напряжением и током от электростанции требуется больше энергии; избыток передаваемой энергии выделяется в виде тепла в проводах и может быть довольно значительным.

Равен отношению потребляемой электроприёмником активной мощности к полной мощности. Активная мощностьрасходуется на совершение работы. Полная мощность - геометрическая сумма активной и реактивной мощностей (в случае синусоидальных тока и напряжения). В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи. Полная мощность равна корню квадратному из суммы квадратов активной и неактивной мощностей. В качестве единицы измерения полной мощности принято использовать вольт-ампер (В∙А) вместо ватта (Вт).

Согласно неравенству Коши-Буняковского, активная мощность, равная среднему значению произведения тока и напряжения, всегда не превышает произведение соответствующих среднеквадратических значений. Поэтому коэффициент мощности принимает значения от нуля до единицы (то есть от 0 до 100 %).

Коэффициент мощности математически можно интерпретировать как косинус угла между векторами тока и напряжения. Поэтому в случае синусоидальных напряжения и тока величина коэффициента мощности совпадает с косинусом угла, на который отстают соответствующие фазы.

В электроэнергетике для коэффициента мощности приняты обозначения cos φ (где φ - сдвиг фаз между силой токаи напряжением) либо λ. Когда для обозначения коэффициента мощности используется λ, его величину обычно выражают в процентах.

При наличии реактивной составляющей в нагрузке кроме значения коэффициента мощности иногда также указывают характер нагрузки: активно-ёмкостный или активно-индуктивный. В этом случае коэффициент мощности соответственно называют опережающим или отстающим.

В случае синусоидального напряжения, если нагрузка не имеет реактивной составляющей, коэффициент мощности равен доле мощности первой гармоники тока в полной мощности, потребляемой нагрузкой, и равен коэффициенту искажений тока.