Импульсный стабилизированный лабораторный блок питания. Лабораторный бп своими руками по картинкам

В плане всего, что было сказано выше, наиболее разумным и наименее затратным представляется изготовление трансформаторного блока питания . Подходящий готовый трансформатор для питания полупроводниковых конструкций можно подобрать от старых магнитофонов, ламповых телевизоров, трехпрограммных громкоговорителей и другой техники выходящей из употребления. Готовые сетевые трансформаторы продаются на радио рынках и в интернет магазинах. Всегда можно найти подходящий вариант.

Внешне трансформатор представляет собой Ш-образный сердечник из листов специальной трансформаторной стали. На сердечнике находится пластиковый или картонный каркас, на котором расположены обмотки. Пластины, как правило, покрыты лаком, чтобы между ними не было электрического контакта. Таким образом борются с вихревыми токами или токами Фуко. Эти токи просто греют сердечник, это просто потери.

Для этих же целей трансформаторное железо сделано из крупных кристаллов, которые также изолированы друг от друга окисными пленками. На трансформаторном железе очень больших размеров эти кристаллы видны невооруженным глазом. Если такое железо резать кровельными ножницами, то срез напоминает полотно ножовки по металлу, содержит мелкие зубчики.

Трансформатор в блоке питания выполняет сразу две функции. Во- первых, это понижение сетевого напряжения до нужного уровня. Во-вторых, это обеспечение гальванической развязки от питающей сети: первичная и вторичная обмотки между собой не соединены, электрическое сопротивление в идеале бесконечно. Связь первичной и вторичной обмотки осуществляется через переменное магнитное поле сердечника, создаваемое первичной обмоткой.

Упрощенный расчет трансформатора

При покупке или самостоятельной намотке трансформатора следует руководствоваться следующими параметрами, которые выражаются всего четырьмя формулами.

Первую из них можно назвать законом трансформации.

U1/U2 = n1/n2 (1),

Простой пример. Поскольку речь идет именно о сетевом трансформаторе, то напряжение на первичной обмотке будет всегда 220В. Предположим, что первичная обмотка содержит 220 витков, а вторичная 22 витка. Это достаточно большой трансформатор, поэтому витков в расчете на один вольт у него немного.

Если на первичную обмотку подать напряжение 220В, то на вторичной обмотке получится 22В, что полностью соответствует коэффициенту трансформации n1/n2, который в нашем примере равен 10. Предположим, что во вторичную обмотку включена нагрузка, потребляющая ток ровно 1А. Тогда ток первичной обмотки составит 0,1А, поскольку токи находятся в обратном соотношении.

Мощность потребляемая обмотками: для вторичной 22В*1А = 22Вт, а для первичной 220В * 0,1А = 22Вт. Такой расчет показывает, что мощности первичной и вторичной обмоток равны. Если вторичных обмоток несколько, то при расчете их мощности следует сложить, это и будет мощность первичной обмотки.

Из этой же формулы следует, что определить количество витков на один вольт очень просто: достаточно намотать пробную обмотку, например, 10 витков, померить на ней напряжение, полученный результат разделить на 10. Число витков на вольт очень поможет, когда потребуется намотать обмотку на нужное напряжение. Следует заметить, что обмотки надо мотать с некоторым запасом, с учетом «просаживания» напряжения на самих обмотках и на регулирующих элементах стабилизаторов. Если минимальное напряжение требуется 12В, то обмотка может быть рассчитана на 17…18В. Это же правило следует соблюдать и при покупке готового трансформатора.

Общая мощность трансформатора подсчитывается как сумма мощностей всех вторичных обмоток, о чем было написано чуть выше. Исходя из этого подсчета, можно выбрать подходящий сердечник, точнее сказать его площадь. Формула для выбора площади сердечника:.

Здесь S площадь сердечника в квадратных сантиметрах, а P общая мощность нагрузки в ваттах. Для Ш-образного сердечника площадью является сечение центрального стержня, на котором расположены обмотки, а для тороидального поперечное сечение тора. Исходя из рассчитанной площади сердечника, можно выбрать подходящее трансформаторное железо.

Расчетное значение следует округлять до ближайшего большего стандартного значения. Все остальные расчетные величины в процессе расчета также округляются в сторону увеличения. Если, предположим, мощность получилась 37,5 Вт, то округляется до 40Вт.

После того, как стала известна площадь сердечника, можно рассчитать число витков в первичной обмотке. Это третья расчетная формула.

Здесь n1 - число витков первичной обмотки, U1 - 220В - напряжение первичной обмотки, S площадь сердечника в квадратных сантиметрах. Особого внимания заслуживает эмпирический коэффициент 50, который может изменяться в некоторых пределах.

Если требуется, чтобы трансформатор не входил в насыщение, не создавал лишних электромагнитных помех (особенно актуально для звуковоспроизводящей аппаратуры), этот коэффициент можно увеличить до 60. В этом случае количество витков в обмотках увеличится, режим работы трансформатора будет облегчен, сердечник уже не сможет войти в насыщение. Главное, чтобы уместились все обмотки.

После того, как определена мощность трансформатора, подсчитаны витки и токи в обмотках, самое время определить сечение провода обмоток. Предполагается, что обмотки намотаны медным проводом. Этот расчет поможет выполнить формула:

Здесь di мм, Ii А соответственно диаметр провода и ток i-ой обмотки. Полученный по расчету диаметр провода также следует округлить до ближайшего большего стандартного значения.

Вот собственно и весь упрощенный расчет сетевого трансформатора, для практических целей даже очень достаточный. Следует, однако, заметить, что этот расчет справедлив только для сетевых трансформаторов, работающих на частоте 50Гц. Для трансформаторов, выполненных на ферритовых сердечниках и работающих на высокой частоте, расчет производится совсем по другим формулам, кроме разве что коэффициента трансформации по формуле 1.

После того, как трансформатор рассчитан, намотан или просто куплен нужного типоразмера, можно приступить к изготовлению блока питания, без которого не обходится ни одна схема.

Нестабилизированные блоки питания

Самые простые по схемотехнике это нестабилизированные блоки питания. Применяются они достаточно часто в различных конструкциях, что упрощает схему, не оказывая влияния на ее функциональность. Например, мощные чаще всего питаются от нестабилизированного источника, поскольку заметить на слух что напряжение питания изменилось на 2…3 вольта практически невозможно. Также нет никакой разницы, при каком напряжении сработает реле: лишь бы сработало, и в дальнейшем не сгорело.

Нестабилизированные блоки питания устроены просто, схема показана на рисунке 1.

Рис. 1. Схема нестабилизированного источника питания

К вторичной обмотке трансформатора подключен выпрямительный мост на диодах. Хотя схем выпрямителей существует достаточно много, мостовая схема является самой распространенной. На выходе моста получается пульсирующее напряжение с удвоенной частотой сети, что характерно для всех схем двухполупериодных выпрямителей (рисунок 2, кривая 1).

Естественно, что такое пульсирующее напряжение для питания транзисторных схем непригодно: представьте себе, как будет реветь усилитель при таком питании! Чтобы сгладить пульсации до приемлемого значения, на выходе выпрямителя устанавливаются фильтры (рисунок 2, кривая 2). В простейшем случае это может быть просто . Сказанное иллюстрируется на рисунке 2.

Расчет емкости этого конденсатора достаточно сложен, поэтому можно рекомендовать проверенные на практике величины: на каждый ампер тока в нагрузке требуется емкость конденсатора 1000…2000 мкФ. Меньшее значение емкости справедливо для случая, когда после выпрямительного моста предполагается использовать стабилизатор напряжения.

По мере увеличения емкости конденсатора пульсации (рисунок 2, кривая 2) будут уменьшаться, но совсем не пропадут. Если пульсации недопустимы, приходится вводить в схему блока питания стабилизаторы напряжения.

Двухполярный источник питания

В случае, когда от источника требуется получить двухполярное напряжение, схему придется несколько изменить. Мост останется все тот же, но вторичная обмотка трансформатора должна иметь среднюю точку. станет уже два, каждый для своей полярности. Такая схема показана на рисунке 3.

Соединение вторичных обмоток должно быть последовательно - согласным, - начало обмотки III соединено с концом обмотки II. Точками отмечаются, как правило, начала обмоток. Если трансформатор промышленного изготовления и все выводы пронумерованы, то можно придерживаться такого правила: все нечетные номера выводов это начала обмоток, соответственно четные - концы. То есть при последовательном соединении надо соединять четный вывод одной обмотки с нечетным выводом другой. Естественно, что ни в коем случае нельзя соединять накоротко выводы одной обмотки, например, 1 и 2.

Стабилизированные блоки питания

Но достаточно часто без стабилизаторов напряжения просто не обойтись. Самым простейшим является параметрический стабилизатор , который содержит всего три детали. После стабилитрона устанавливается электролитический конденсатор, назначение которого сглаживание остаточных пульсаций. Его схема показана на рисунке 4.

Рис. 4. Схема параметрического стабилизатора

Вообще, этот конденсатор устанавливается даже на выходе интегральных стабилизаторов напряжения типа LM78XX . Это требуется даже техническими условиями (Data Sheet) на микросхемные стабилизаторы.

Параметрический стабилизатор может обеспечить в нагрузке ток до нескольких миллиампер, в данном случае около двадцати. В схемах электронных устройств такой стабилизатор применяется достаточно часто. Коэффициент стабилизации (соотношение изменения входного напряжения в %% к изменению выходного, также в %%) таких стабилизаторов, как правило, не более 2.

Если параметрический стабилизатор дополнить эмиттерным повторителем , всего на одном транзисторе, как показано на рисунке 5, то возможности параметрического стабилизатора станут намного выше. Коэффициент стабилизации подобных схем достигает значения 70.

При указанных на схеме параметрах и токе нагрузки 1А на транзисторе будет рассеиваться достаточная мощность. Такая мощность рассчитывается следующим образом: разность напряжений коллектор - эмиттер умножается на ток нагрузки. В данном случае это и есть ток коллектора. (12В - 5в)*1А = 7Вт. При такой мощности транзистор придется ставить на радиатор.

Мощность, отдаваемая в нагрузку, будет всего 5в*1А = 5Вт. Цифры, показанные на рисунке 5, вполне достаточны, чтобы произвести подобный расчет. Таким образом, КПД источника питания с таким стабилизатором при входном напряжении 12В всего около 40%. Чтобы его несколько повысить можно уменьшить входное напряжение, но не менее, чем до 8 вольт, иначе стабилизатор перестанет работать.

Для того, чтобы собрать стабилизатор напряжения отрицательной полярности достаточно в рассмотренной схеме заменить транзистор проводимости n-p-n на проводимость p-n-p, поменять полярность включения стабилитрона и входного напряжения. Но такие схемы стали уже анахронизмом, в настоящее время не применяются, им на смену пришли интегральные стабилизаторы напряжения.

Казалось, что вполне достаточно рассмотренную схему выполнить в интегральном варианте и все было бы в порядке. Но разработчики не стали повторять малоэффективную схему, уж слишком маленький у нее КПД, да и стабилизация невелика. Для повышения коэффициента стабилизации в современные интегральные стабилизаторы введена отрицательная обратная связь.

Такие стабилизаторы разрабатывались на ОУ общего применения, пока схемотехник и разработчик Р.Видлар не предложил этот ОУ интегрировать внутрь стабилизатора. Первым стабилизатором подобного рода был легендарный UA723, требовавший при установке некоторого числа дополнительных деталей.

Более современным вариантом интегральных стабилизаторов являются стабилизаторы серий LM78XX для напряжения положительной полярности и LM79XX для отрицательной. В этой маркировке 78 это собственно название микросхемы - стабилизатора, буквы LM перед цифрами могут быть и другими, - зависит от конкретного производителя. Вместо букв XX вставляются цифры, указывающие напряжение стабилизации в вольтах: 05, 08, 12, 15 и т.д. Кроме стабилизации напряжения, микросхемы имеют защиту от короткого замыкания в нагрузке и тепловую защиту. Как раз то, что требуется для создания простого и надежного лабораторного блока питания.

Отечественная электронная промышленность выпускает такие стабилизаторы под маркой КР142ЕНXX . Но маркировка у нас как всегда зашифрованная, поэтому определить напряжение стабилизации можно только по справочнику или заучивать как стихи в школе. Все упомянутые стабилизаторы имеют фиксированное значение выходного напряжения. Типовая схема включения стабилизаторов серии 78XX показана на рисунке 6.

Рис. 6. Типовая схема включения стабилизаторов серии 78XX

Однако, на их основе можно создать и регулируемые источники. В качестве примера можно привести схему, показанную на рисунке 7.


Рис. 7. Схема регулируемого блока питания для домашней лаборатории

Недостатком схемы можно считать, что регулирование производится не от нуля, а от 5 вольт, т.е. от напряжения стабилизации микросхемы. Непонятно почему выводы стабилизатора пронумерованы как 17, 8, 2, когда на самом деле их всего лишь три!

А на рисунке 9 показано, как на базе оригинальной буржуйской LM317 собрать регулируемый блок питания, которым можно пользоваться в качестве лабораторного.

Рис. 9. Схема блока питания на микросхеме LM317

Если потребуется двухполярный регулируемый источник, то проще всего в одном корпусе собрать два одинаковых стабилизатора, запитав их от разных обмоток трансформатора. При этом вывести на переднюю панель блока отдельными клеммами выход каждого стабилизатора. Коммутировать напряжения можно будет просто проволочными перемычками.

Когда то на работе у меня был советский источник питания Б5-47, он очень громко и противно пищал, грелся, периодически из него шел дым. Таким образом пользование сей девайсом более 5 минут причиняло просто невыносимые моральные страдания. Явно он был неисправен. Вскрытие показало что лучше его сразу выбросить и забыть. К тому же его user interface мне никогда не нравился, юзабельность тоже оставляла желать лучшего. Понятно, что без нормального БП жизнь скучна, решил быстренько сделать БП из того что было под рукой. В итоге изготовление данной конструкции по разным причинам затянулось аж на 2 года. Собственно вот результат:

Требования были следующие: регулируемое выходное напряжение до 30 В с регулируемым токоограничением до 5 А. Разумеется цифровая индикация must have. Дизайн должен напоминать MASTECH HY3005D и им подобные. Единственное - мне никогда не нравилось что первый прибор показывает ток. Ну неправильно это - напряжение всегда первично, соответственно первый прибор должен показывать именно напряжение.

Первоначально проектировал схему на базе линейного стабилизатора К142ЕН2А, но в итоге отказался от этой идеи - низкий КПД, регулирующий силовой транзистор сильно грелся даже с учетом того что был предусмотрен переключатель отпаек на вторичной стороне трансформатора. Да и вообще всё как-то криво работало. Пришлось выпилить.

Второй вариант схемы разработал на базе легендарного ШИМ-контроллера TL494, который в разных вариациях встречается во многих компьютерных блоках питания. На этот раз всё получилось как надо.

Вкратце о конструкции:

Принципиальная схема


Как уже говорил - девайс собрал из запчастей, большинство которых были в радиусе 5 метров от меня.

Понижающий трансформатор нашелся под столом, марки я его незнаю, цвет - черненький. Напряжение на вторичке около 40 В.
D1 - TL494, VD1 - диод шоттки и тороидальный дроссель L1 выпаял из неисправного компьютерного блока питания: диод шоттки используется в схеме выпрямления, он установлен на радиаторе возле импульсного трансформатора, тороидальный дроссель расположен рядом с ним.
LM358 - весьма хороший и распространенный операционный усилитель. Продаётся почти на каждом углу. Рекомендован к приобретению.
Шунт R12 - взял из какого-то старого связисткого оборудования: представляет собой 3 толстых изогнутых проволочки.

Резисторы R9, R10 используются для регулирования выходного напряжения (грубо, точно). Резисторы R3, R4 используются для регулирования токоограничения (грубо, точно).
При наладке БП подстроечным резистором R15 регулируется порог переключения светодиодной сигнализации. Еще возникли проблемы с интегральным стабилизатором 7805 - при входном напряжении около 40 В он начинал ужасно глючить - просаживал выходное напряжение, решил проблему установив по входу 1 Вт гасящий резистор R13.

Сам корпус взят от древнего самопишущего регистратора. Компоновка получилась следующей - в середине корпуса установлен силовой трансформатор, который вошел туда как родной, видимо они были созданы друг для друга. В передней части БП расположена электронная схема управления, органы управления и сигнализации. В задней части корпуса расположена вся силовая электроника. Таким образом трансформатор как бы делит БП на 2 части - слаботочную и силовую.


Передняя часть корпуса с откинутой лицевой крышкой. Цифровые измерительные приборы приехали из Китая, они заводского производства. Электронная схема управления состоит из 2 плат: плата регулятора напряжения - TL494 c обвязкой, и плата сигнализации - включает в себя микросхемы D3,D4. Почему не сделал на одной плате? Просто сигнализацию я делал несколько позже чем регулятор, и отдельно доводил её "до ума". Там тоже были свои заморочки.


Задняя часть корпуса. На общем радиаторе установлены диодный мост KBPC 3510, силовой транзистор КТ827А, дроссель L1, шунт R12. Всё это дело изнутри обдувается 12 сантиметровым вентилятором. В задней части корпуса установлены также предохранители, сглаживающие конденсаторы C1, C4 и маленький вспомогательный импульсный блок питания для работы вентилятора и цифровых измерительных приборов.


Конечно, можно было бы купить фирменный БП и не городить огород. Для дома я бы так и сделал. А на работе другая история - здесь тяжело что-нить "выбить", хотя заказываю каждый год, такова уж суровая российская действительность.


Если кто-то задумает повторить конструкцию вот

Примерно раз в год во меня просыпается неумолимое желание сделать лабораторный блок питания (например, свой прошлый лабораторник я описывал ). А тут еще и предложили что-нибудь обозреть - ну и я не устоял, ибо очень давно хотел попробовать данный модуль. К сожалению, расчленёнки не будет, потому что конструкция крайне сложно разбирается, и я побоялся не собрать нормально в обратный зад. :)

подобного модуля уже был, но данный - привлёк индикацией. Всё же большие цифры гораздо удобнее мелких.

Начну я, однако, не с главного героя обзора, а со второго, не менее важного - (также предоставленного для обзора), без которого данный модуль бесполезен.





Блок питания несколько отличается от первоначальной версии, и, к сожалению, не в лучшую сторону. Внешние отличия заключаются в надписи ac-dc 24v вместо 2412DC на первоначальной версии, и наличии некоего адреса сайта на нижней стороне платы. «Внутренние» отличия гораздо интереснее. Но для начала - внешний вид.

Главная проблема данного экземпляра (а скорее всей партии) - некачественный выходной разъем. он совершенно отвратительно паяется, ну и закономерно плохо припаян. Пропаять нужно сразу, потому что держится он еле-еле. Впрочем, как я написал - это проблема экземпляра либо партии, и в целом вероятность повтора данной проблемы у других покупателей через какое-то время - не так и велика.


В целом пайка не блещет аккуратностью, и желательно плату осмотреть и пропаять подозрительные места



Знаменитый конденсатор запаян как и раньше самый обычный, и его тоже желательно заменить, как писал в уважаемый Kirich. Также он рекомендует повесить керамику по выходу и параллельно выходным электролитам.


Диод снаббера, однако, запаян правильно:


Плата хорошо отмыта, и в целом всё с ней хорошо, если бы не одно маленькое НО. Похоже, что производитель ШИМ-контроллера, на котором собран данный БП, решил усовершенствовать «зелёный» режим, и вместо снижения частоты на малой нагрузке - выдаёт на затвор силового транзистора пачки импульсов на штатных 62-64кГц. Выглядит на осцилле это как короткая пачка управляющих испульсов и длинная пауза - порядка 30мС (при работе без нагрузки), а с увеличением нагрузки эти паузы уменьшаются. И всё бы хорошо, если не то самое маленькое НО - на выходе в результате имеем изрядную «пилу»:



На фото - работа без нагрузки и с одноамперной кажется нагрузкой. AC 0.2В/деление и 5мС/деление.

Похоже, что мои соображения выше правильны, и это такая интересная «особенность» новых версиий БП. Старые, как говорили, изрядно снижали частоту - вплоть до 14-15кГц, а эти вот начинают работать «импульсно» и выдавать пилу на выход. Как с этим бороться мне не совсем ясно - пробовал я и конденсаторы большей емкости ставить - ничерта не даёт.

Естественно, в комментариях приветствуются советы по доработке, потому что сейчас похоже все БП пошли с такой вот «фичей», во всяком случае в комментах к обзору Kirichа я встречал похожие осциллки.

Впрочем, как ни странно - в итоге всё работает вполне нормально.

Ну что, перейдём к главному герою?

Поставляется в прозрачной пластиковой коробочке, завёрнутый в инструкцию. Инструкция крупная, на хорошей бумаге, на китайском и вполне вменяемом английском.






Как видим заявлена точность 0.5%, и надо сказать что он вполне ее обеспечивает, хотя на совсем малых токах и врёт, что, впрочем, закономерно - но обэтом ниже.

Сам модуль компактный (размеры окна в корпусе для установки - 39х71.5, плюс выборки до 75.5, глубина 35.5), дисплей 28х27, высота цифр 5мм (на «обычном» ампервольтметре 7.5мм). Сам дисплей яркий, контрастный, с хорошими углами обзора. Единственное что не очень нравится - довольно медленное обновление (показания наверно раза два в секунду обновляются). Но это думаю не в дисплее проблема, а в прошивке, да и не напрягает оно совершенно.


Дополнительная информация




















На 8-ногой микрухе написано XL7005A - шим-контроллер 150кГц 0.4А

К сожалению, разобрать его - нетривиальная задача, ибо три платы спаяны «бутербродом», три разъема по 8 контактов, которые стоят довольно плотненько, и можно с лёгкостью чего-нить задеть и испортить. так что извиняйте. Над энкодером видны надписи rx gnd tx - видимо модуль поддерживает передачу данных, ну и выше явно разъем для перепрошивки. В целом качество сборки оставило приятные впечатления, Флюс не смыт в местах пайки переходных контактов, что закономерно и понятно, ну и флюс явно такой который не требует смывания.

Понятно, что приобретается такой модуль не для разборки, а для сборки, и не непонятно чего, но блока питания. Для тех кто не в курсе что такое лабораторный БП и для чего он нужен - кратенько напишу, что это регулируемый блок питания, с ограничением выходного тока и регулировкой выходного напряжения. Нужен он для запитки устройств «на столе», например при ремонте или разработке. Позволяет не спалить что-то случайно;) Также им можно например заряжать аккумуляторы.

Переходим к сборке блока питания. Пожалуй, спрячу под спойлер, а то фоток будет много.

сборка блока питания

собирать будем в корпусе Kradex Z-3. все компоненты входят в него настолько хорошо, что создается впечатление что они просто созданы друг для друга. ;)

Корпуса kradex отличаются идиотской конструкцией соединяющих стоек - они слишком далеко от боковых стенок и слишком близко к передней и задней. поэтому - безжалостно выкусываем, и переносим в серединку корпуса, где они никому не будут мешать. крепим дихлорэтаном. аналогично - делаем стоечки для крепления БП.


Далее - фрезеруем переднюю и заднюю панели, а также отверстия для вентилятора. в принципе - не так он и нужен, но я решил сразу поставить, чтобы два раза не вставать. к сожалению, места хватило только для 50мм вентилятора.




























Так как на «морде» будет USB разъем - припаиваем к нему текстолитовые «уши», а к корпусу приклеиваем кусочки пластика с предварительно нарезанной резьбой м3. самые короткие винтики «от компьютера» отлично подходят для крепления разъема к передней панели.

То что фрезу в патрон зажимать низя я в курсе, и фанговый патрон есть, и цанги хорошие, но я разгильдяй, да и материал тут мягкий, поэтому я ленюсь ставить другой патрон и такую мелочёвку фрезерую так.

Для питания USB и вентилятора я применил преобразователи из прошлого моего обзора, приклеив их к радиатору из ш-образного профиля 8х15. очень способствует улучшению охлаждения. вентилятор запитал от 6.5В - на 5В он дует совсем слабо. хотел приделать еще регулировку скорости, но поленился, да и решил что отдельного преобразователя хватит для ручной установки любых понравившихся оборотов.


«первичный» блок питания я решил доработать - чуть повысить напряжение, чтобы получить на выходе всего устройства хотя бы 24В. с учетом ограничения максимального входного напряжения примененных преобразователей в 28В - я решил «разогнать» БП до 26В. для этого параллельно резистору R19 припаиваем резистор на 22кОм.




Ну и результат:





Теперь перейдём к тестированию.

Для начала - как оно вообще работает. верхняя маленькая строка - установленные значения тока и напряжения. большие цифры - это измеренные значения на выходе, ну и снизу - входное напряжение (минимальная разность между входом и выходом около вольта). Пиктограммки справа показывают текущее состояние: блокировка, состояние (ок/не ок), режим выхода (cc/cv) и состояне выхода - вкл/выкл. При включении выход выключен. Включение и выключение выхода - кнопкой под энкодером. Пиктограммка выкл - красным, вкл - зеленым. Блокировка - длительным нажатием энкодера.



При нажатии кнопки set - у нас появляется возможность изменять текущие значения тока и напряжения. изменяемый разряд подсвечивается красным в верхней строчке, и переключается нажатием на энкодер. вращением энкодера - изменяется значение. при переходе с 9 на 0 - увеличивается старший разряд.


При повторном нажатии на set - попадаем в меню «расширенных» настроек. А в верхней строчке соответственно начинают отображаться текущие параметры выхода - ток и напряжение.


Тут у нас есть выходное напряжение, выходной ток, напряжение/ток/мощность срабатывания защиты, яркость подсветки, и текущая ячейка памяти. ячеек этих 10. М0 - это «ручной» режим, то есть то чем мы балуемся сейчас. эти значения сохраняются и восстанавливаются при последующем включении.

Выбор параметра - кнопками вверх/вниз, далее нажимаем на энкодер и изменяем параметр, выход кнопкой set. для того чтобы сохранить значения в какую-то ячейку памяти, нужно вначале ее выбрать в нижнем пункте меню, потом изменить всё что нужно, а потом перейти в нижнем пункте меню на номер ячейки и подержать кнопку set две секунды. Номер ячейки в которую сохранено - появится слева между пиктограммами.


On|off в нижнем пункте меню справа - это состояние выхода при выборе данной ячейки памяти. off - выключено, on - «как было».

Управление, конечно, немного странноватое. Как работают эти «защиты» я честно говоря так и не понял, пользуюсь просто в режиме ограничения тока и стабилизации напряжения.

Далее. следующее нажатие кнопки set выносит нас на «главный экран». Выбор ячейки памяти осуществляется либо удержанием кнопки вверх для выбора М1, либо кнопки вниз для выбора М2, либо кнопки set - а далее энкодером выбираем номер ячейки. досадно, что при переключении ячеек памяти не отображаются занесенные туда ток и напряжение. Это было бы логично и удобно - но нет.

Теперь - измерения. Вынес в табличку, и, честно говоря, даже не буду толком считать и комментировать, ибо уже чего-то котелок не варит;) Set - это то что выставляем, изм - это то что он измеряет на своем выходе, тестер - соответственно что показывает тестер. На малых токах врёт довольно значительно, но ИМХО это простительно. Со 100мА и выше - стабильно врёт на 3мА (занижает), на меньших токах - не так сильно, но тоже врёт. Как на мой взгляд - в погрешности на адекватных токах влазит (0.5% +2 цифры). Пусть метрологи поправят если что;) На малых токах конечно мимо.


А, чуть не забыл. измерения помех и пульсаций.

На малых токах:


На больших (2.5А кажется) токах:


AC 0,2В 500мкС.

При включении напряжение плавно нарастает, включение происходит в режиме СС, потом переходит в режим CV:


Если подключить светодиод, а потом включить выход - то горит ок. Если вначале включить выход, а потом подключить светодиод - то даже пикнуть не успевает, перегорает мгновенно, что предсказуемо.

Подытоживая: мне очень нравится. ИМХО за эти деньги (до 50 баксов) альтернатив просто нет. По работе он будет ИМХО не хуже любого другого китайского лабораторника. Не самое продуманное управление, но и не так всё страшно - думаю можно будет привыкнуть достаточно быстро, да и чем тут особо управлять-то… один раз настроил, и радуйся, а крутить напряжения потом - дело кнопки и энкодера. По конструкции БП - я уже не уверен, что гнёзда нужно было делать слева, возможно стоило перенести их вправо - что, впрочем, можно сделать банально перевернув переднюю панель. Несомненно, в комментах накидают ссылок на более дешевые варианты, но даже за эту сумму - всё вполне неплохо.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +89 Добавить в избранное Обзор понравился +53 +127

Лабораторный блок питания прежде всего предназначен для длительного питания разрабатываемых и конструируемых схем и должен обеспечивать широкий интервал регулируемых напряжений, иметь защиту от короткого замыкания и от чрезмерного тока потребления. Лабораторный блок питания должен быть под рукой у каждого уважающего себя радиолюбителя

На биполярном транзисторе VT1 собрана схема модуля сравнения лабораторного блока питания: с бегунка переменного сопротивления R3 на базу первого транзистора проходит образцовое напряжение, которое задается источником образцового напряжения на радиокомпонентах VD5, VD6, HL1, R1. На эмиттерный переход VT1 поступает входное напряжение с делителя на сопротивлениях R14 и R15. В результате сравнения обоих уровней, сигнал рассогласования поступает на базу второго транзистора, который включен по схеме усилителя тока и управляет силовым транзистором VT4.

Работа лабораторного блока питания в режиме КЗ

Если произойдет случайное короткое замыкание в схеме лабораторного блока питания или нагрузка превысит разрешенный предел, увеличится падение напряжения на мощном сопротивление R8. В результате чего третий транзистор откроется и тем замкнет базовую цепь VT2, лимитируя нагрузочный ток на выходе блока питания. Сигнализирует о перегрузки по току светодиод HL2.



Если потребуется отрегулировать нагрузочный ток, то можно в разрыв цепи между резисторами R7 и R9 подсоединить переменное сопротивление номиналом 250 Ом, причем бегунок его нужно подсоединить к базе третьего транзистора. Нагрузочный тока можно регулировать в диапазоне от 400 мА до 1,9 А.

Трансформатор можно использовать любой с вторичной обмоткой на 20-40 вольт. Дроссель L1 можно намотать на каркас диаметром 8 мм и 120 витков провода ПЭЛ 0,6 мм.

Основа первой схемы лабораторного блока питания является операционный усилитель TLC2272. Выпрямленное напряжение 38 вольт проходя через фильтрующий конденсатором попадает на параметрический стабилизатор. Он собран на транзисторе VT1, диоде VD5 и конденсаторе С2 и сопротивлениях R1, R2. Через этот стабилизатор включен операционный усилитель.




Диоды VD5 и VD8 устанавливать не обязательно Сопротивление резисторов R1 и R5 можно увеличить в три раза. Транзистор VT6 лучше установить кремниевый, например, КТ818В или КТ818Г. Между выводами 7, 1 микросхем DA1 и DA2 и общим проводом желательно установить керамические конденсаторы емкостью 0,1 мкф. Современной заменой транзисторов МП114 и П309 в данном устройстве могут служить КГ502В, КТ502Г и КГ503В, КТ503Г соответственно. Для уменьшения мультипликативных помех каждую половину вторичной обмотки трансформатора Т1 полезно зашунтировать конденсатором емкостью 0,47 мкф.

Наглядное пошаговое руководство по переделки компьютерного БП в мощный лабораторный.

Схема его очень проста, но обеспечивает получение переменного напряжения в диапазоне от 2 до 28В и постоянного напряжения от 3 до 37В. Сетевое напряжение, коммутируемое включателем SA1, через понижающий трансформатор Т1 с многоступенчатой вторичной обмоткой поступает на переключатель SA2, которым выбирается нужный уровень выходного напряжения. Тумблер SA3 служит для включения постоянного или переменного напряжения. При выбранном положении "Переменное" напряжение поступает, на контакты Х2 с включенных секций вторичной обмотки Т1. В положении SA3 "ПОСТ" напряжение выпрямляется диодным мостом VD1- VD4, сглаживается конденсатором С1 и подается на контакты ХЗ. По прибору PV1 контролируется выходное напряжение, светодиод HL1 сигнализирует о включении блока в сеть.


Детали: FU1 -предохранитель на 1...2 A
SA1 - тумблер МТЗ (сдвоенный), но можно использовать однополюсный МТ1
Трансформатор Т1 - самодельный понижающий с 10-ю отводами (1 - 2 В, 2 -6 В, 3 - 8 В, 4-11 В, 5-14 В, 6 - 17 В, 7 - 19 В, 8 - 23 В, 9 - 26 В, 10 - 28 В)
SA2 - галетный переключатель на 11 положений
SA3 - тумблер МТЗ
Диоды VD1...VD4 - КД202Д, установленные на радиаторы,
PV1 - измерительная головка марки М42100. Нужный предел шкалы устанавливается подбором сопротивления R2

Эта схема лабораторного блока питания способна работать с нагрузкой, потребляющей до 1,6 А. Конструкция имеет защиту от перегрузки и КЗ, а также защиту от возможного повышенного напряжения сети, что особенно актуально при проживании в сельской местности.

Напряжение сети через плавкий предохранитель идет на первичную обмотку понижающего трансформатора. Пониженное до 9 В напряжение со второй обмотки проходит на мостовой выпрямитель, на диодах Шотки VD2 - VD5. Пульсации напряжения сглаживаются большой ёмкостью С5, после чего идет на компенсационный стабилизатор напряжения, построенный с использованием дискретных компонентов.



Работа компенсационного стабилизатора: С увеличением входного напряжения или снижением тока нагрузки выходное напряжение пытается увеличиться. Из-за этого транзистор VT3 открывается сильнее, следовательно, сильнее откроется и VT1, который, шунтируя затвор-исток полевого транзистора VT2 и сопротивление канала сток-исток возрастает, напряжение на выходе стабилизатора понижается. Регулировку выходного напряжения осуществляют переменным сопротивлениемс R9. Стабилитрон VD6 защищает полевой транзистор

Лабораторный блок питания

В этой статье я хотел бы рассказать о своем лабораторном БП, за основу которого была взята схема «Простой и доступный БП ». Вариантов этого устройства довольно много, авторы постоянно что-то добавляют, вносят изменения, на тот момент, когда я начал собирать, последней версией была v 13. Однако я немного изменил схему, в свою пользу, т.к. планировал использовать БП на большие токи и хотел добавить схему переключения обмоток трансформатора. Вот схема оригинал:

В своем варианте я убрал «Индикатор перегрузки» на DA 1.3 и «Схему измерителя тока» на DA 1.4 и т.к. теперь два ОУ освободились, я решил на них же собрать «Схему переключения обмоток трансформатора», но об этом позже. Из-за этого была изменена схема стабилизации +12В для микросхемы ОУ, был использован отдельный источник питания со стабилизатором 7812. Также добавил силовых транзисторов, вместо одного 2N3055 я поставил пару 2SC5200. Максимальный отдаваемый ток теперь 5,6А. Вот мой вариант схемы:


В итоге мой вариант регулирует напряжение от 0 до 25В и может ограничивать максимальный ток на уровне от 0,01А до 5,6А. Для окончательной настройки схемы нужно установить максимальное напряжение резистором R13 и подобрать резисторы R14 и R16 для макс. и мин. тока соответственно.

Управление обмотками трансформатора

Бывают такие случаи,что нужно подключить к ЛБП какую-то низковольтную нагрузку, но с довольно большим током, например 5В при токе 5А. Тогда получается, что на силовых транзисторах будет падать несколько десятков вольт. К примеру после диодного моста и конденсатора в фильтре у нас 30В, а на выходе ЛБП всего 5В, значит на транзисторе будет падать 25В, и это при токе в 5А, получается, что бедный транзистор как-то должен превратить 125Вт просто в тепло. Одному мощному транзистору это не под силу, просто напросто произойдет тепловой пробой и он выйдет из строя, да и двум тяжко будет. На этой случай придумана схема, которая переключает обмотки трансформатора в зависимости от выходного напряжения ЛБП. К примеру, если нужно 5В, то зачем подавать на ЛБП 30В?

Ниже изображена схема переключения обмоток:


У меня же сам ЛБП и «схема переключения» собраны на одной плате. Переключение обмоток происходит при напряжениях на выходе 12В и 18В. Настройка схемы сводится к установке нужных напряжений переменными резисторами. Резистором R2 устанавливается деление выходного напряжения на 10, т.е. если на выходе ЛБП 25В, то на среднем выводе R2 (ползунке) должно быть 2,5В. Далее устанавливаем пороги срабатывания реле. Например у меня при 12В срабатывает первое реле, значит на 2 ножке микросхемы нужно установить 1,2В, соответственно при 18В на 6 ножке устанавливаем 1,8В. Позже можно будет заменить переменные резисторы R3 и R5 на два постоянных, спаяв их как делитель напряжения.

Охлаждение

В качестве радиаторов были собраны экспериментальные варианты из алюминиевых карнизов для штор, профили прикручиваются винтами к алюминиевой пластине (признаюсь, хотелось бы потолще) и естественно промазываются термопастой. Эффективность таких радиаторов довольна неплохая. В верхней крышке корпуса есть отверстия для охлаждения.

Ампервольтметры

В качестве измерителя напряжения и тока была использована довольно известная схема на специализированной мс ICL7107. Я собирал по этой схеме:


Отдельное питание

Для питания индикации и микросхем LM324 в ЛБП используется отдельный трансформатор и стабилизаторы +5В и +12В.

О корпусе

Основой для корпуса стал кусок стеклотекстолита, толщиной около 6-7 мм. На нем все и собиралось, далее были прикручены передняя панель со всеми органами управления и индикацией и задняя с вентиляторами и сетевым разьемом. И сверху П–образная крышка, обклеенная синей самоклейкой.

Трансформаторы я использовал ТН 60. У них довольно мощные обмотки по 6,3В. Ток до 7А. По весу данный аппарат получился около 10кг.

Диодные мосты серии КВРС, 35-амперные, также посаженые на общий радиатор с силовыми транзисторами.

Вот общий вид моего ЛБП:




Прикрепленные файлы.