Проводимость тока в различных средах. Электрический ток в различных средах

1 слайд

2 слайд

3 слайд

Электрические свойства веществ Проводники Полупроводники Диэлектрики Хорошо проводят электрический ток К ним относятся металлы, электролиты, плазма … Наиболее используемые проводники – Au, Ag, Cu, Al, Fe … Практически не проводят электрический ток К ним относятся пластмассы, резина, стекло, фарфор, сухое дерево, бумага … Занимают по проводимости промежуточное положение между проводниками и диэлектриками Si, Ge, Se, In, As Разные вещества имеют различные электрические свойства, однако по электрической проводимости их можно разделить на 3 основные группы: Вещества

4 слайд

5 слайд

Природа электрического тока в металлах Электрический ток в металлических проводниках никаких изменений в этих проводниках, кроме их нагревания не вызывает. Концентрация электронов проводимости в металле очень велика: по порядку величины она равна числу атомов в единице объёма металла. Электроны в металлах находятся в непрерывном движении. Их беспорядочное движение напоминает движение молекул идеального газа. Это дало основание считать, что электроны в металлах образуют своеобразный электронный газ. Но скорость беспорядочного движения электронов металле значительно больше скорости молекул в газе (она составляет примерно 105 м/с). Электрический ток в металлах

6 слайд

Опыт Папалекси-Мандельштама Описание опыта: Цель: выяснить какова проводимость металлов. Установка: катушка на стержне со скользящими контактами, присоединены к гальванометру. Ход эксперимента: катушка раскручивалась с большой скоростью, затем резко останавливалась, при этом наблюдался отброс стрелки гальванометра. Вывод: проводимость металлов - электронная. Электрический ток в металлах

7 слайд

Металлы имеют кристаллическое строение. В узлах кристаллической решетки расположены положительные ионы, совершающие тепловые колебания вблизи положения равновесия, а в пространстве между ними хаотично движутся свободные электроны. Электрическое поле сообщает им ускорение в направлении, противоположном направлению вектора напряженности поля. Поэтому в электрическом поле беспорядочно движущиеся электроны смещаются в одном направлении, т.е. движутся упорядоченно. - - - - - - - - - - Электрический ток в металлах

8 слайд

Зависимость сопротивления проводника от температуры При повышении температуры удельное сопротивление проводника возрастает. Коэффициент сопротивления равен относительному изменению сопротивления проводника при нагревании на 1К. Электрический ток в металлах

9 слайд

Собственная проводимость полупроводников Примесная проводимость полупроводников p – n переход и его свойства

10 слайд

Полупроводники Полупроводники – вещества у которых удельное сопротивление с повышением температуры уменьшается Собственная проводимость полупроводников Примесная проводимость полупроводников p – n переход и его свойства Электрический ток в полупроводниках

11 слайд

Собственная проводимость полупроводников Рассмотрим проводимость полупроводников на основе кремния Si Кремний – 4 валентный химический элемент. Каждый атом имеет во внешнем электронном слое по 4 электрона, которые используются для образования парноэлектронных (ковалентных) связей с 4 соседними атомами При обычных условиях (невысоких температурах) в полупроводниках отсутствуют свободные заряженные частицы, поэтому полупроводник не проводит электрический ток Si Si Si Si Si - - - - - - - - Электрический ток в полупроводниках

12 слайд

Рассмотрим изменения в полупроводнике при увеличении температуры При увеличении температуры энергия электронов увеличивается и некоторые из них покидают связи, становясь свободными электронами. На их месте остаются некомпенсированные электрические заряды (виртуальные заряженные частицы), называемые дырками. Si Si Si Si Si - - - - - - + свободный электрон дырка + + - - Электрический ток в полупроводниках

13 слайд

Таким образом, электрический ток в полупроводниках представляет собой упорядоченное движение свободных электронов и положительных виртуальных частиц - дырок Зависимость сопротивления от температуры R (Ом) t (0C) металл R0 полупроводник При увеличении температуры растет число свободных носителей заряда, проводимость полупроводников растет, сопротивление уменьшается. Электрический ток в полупроводниках

14 слайд

Донорные примеси Собственная проводимость полупроводников явно недостаточна для технического применения полупроводников. Поэтому для увеличение проводимости в чистые полупроводники внедряют примеси (легируют) , которые бывают донорные и акцепторные Si Si - - - As - - - Si - Si - - При легировании 4–валентного кремния Si 5–валентным мышьяком As, один из 5 электронов мышьяка становится свободным. As – положительный ион. Дырки нет! Такой полупроводник называется полупроводником n – типа, основными носителями заряда являются электроны, а примесь мышьяка, дающая свободные электроны, называется донорной. Электрический ток в полупроводниках

15 слайд

Акцепторные примеси Такой полупроводник называется полупроводником p – типа, основными носителями заряда являются дырки, а примесь индия, дающая дырки, называется акцепторной Если кремний легировать трехвалентным индием, то для образования связей с кремнием у индия не хватает одного электрона, т.е. образуется дырка Основа дает электроны и дырки в равном количестве. Примесь – только дырки. Si - Si - In - - - + Si Si - - Электрический ток в полупроводниках

16 слайд

17 слайд

Дистиллированная вода не проводит электрического тока. Опустим кристалл поваренной соли в дистиллированную воду и, слегка перемешав воду, замкнем цепь. Мы обнаружим, что лампочка загорается. При растворении соли в воде появляются свободные носители электрических зарядов. Электрический ток в жидкостях

18 слайд

Как возникают свободные носители электрических зарядов? При погружении кристалла в воду к положительным ионам натрия, находящимся на поверхности кристалла, молекулы воды притягиваются своими отрицательными полюсами. К отрицательным ионам хлора молекулы воды поворачиваются положительными полюсами. Электрический ток в жидкостях

19 слайд

Электролитическая диссоциация – это распад молекул на ионы под действием растворителя. Подвижными носителями зарядов в растворах являются только ионы. Жидкий проводник, в котором подвижными носителями зарядов являются только ионы, называют электролитом. Электрический ток в жидкостях

20 слайд

Как проходит ток через электролит? Опустим в сосуд пластины и соединим их с источником тока. Эти пластины называются электродами. Катод -пластина, соединенная с отрицательным полюсом источника. Анод - пластина, соединенная с положительным полюсом источника. Электрический ток в жидкостях

21 слайд

Под действием сил электрического поля положительно заряженные ионы движутся к катоду, а отрицательные ионы к аноду. На аноде отрицательные ионы отдают свои лишние электроны, а на катоде положительные ионы получают недостающие электроны. Электрический ток в жидкостях

22 слайд

Электролиз На катоде и аноде выделяются вещества, входящие в состав раствора электролита. Прохождение электрического тока через раствор электролита, сопровождающееся химическими превращениями вещества и выделением его на электродах, называется электролизом. Электрический ток в жидкостях

23 слайд

Закон электролиза Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит: m = kQ = kIt. Это закон электролиза. Величину k называют электрохимическим эквивалентом. Опыты Фарадея показали, что масса выделившегося при электролизе вещества зависит не только от величины заряда, но и от рода вещества. Электрический ток в жидкостях

24 слайд

25 слайд

Газы в нормальном состоянии являются диэлектриками, так как состоят из электрически нейтральных атомов и молекул и поэтому не проводят электричества. Изолирующие свойства газов объясняются тем, что атомы и молекулы газов в естественном состоянии являются нейтральными незаряженными частицами. Отсюда ясно, что для того, чтобы сделать газ проводящим, нужно тем или иным способом внести в него или создать в нем свободные носители заряда – заряженные частицы. При этом возможны два случая: либо эти заряженные частицы создаются действием какого-нибудь внешнего фактора или вводятся в газ извне – несамостоятельная проводимость, либо они создаются в газе действием самого электрического поля, существующего между электродами – самостоятельная проводимость. Электрический ток в газах Электрический ток в газах

26 слайд

Проводниками могут быть только ионизированные газы, в которых содержатся электроны, положительные и отрицательные ионы. Ионизацией называется процесс отделения электронов от атомов и молекул. Ионизация возникает под действием высоких температур и различных излучений (рентгеновских, радиоактивных, ультрафиолетовых, космических лучей), вследствие столкновения быстрых частиц или атомов с атомами и молекулами газов. Образовавшиеся электроны и ионы делают газ проводником электричества. Процессы ионизации: электронный удар термическая ионизация фотоионизация Электрический ток в газах

27 слайд

Типы самостоятельных разрядов В зависимости от процессов образования ионов в разряде при различных давлениях газа и напряжениях, приложенных к электродам, различают несколько типов самостоятельных разрядов: тлеющий искровой коронный дуговой Электрический ток в газах

28 слайд

Тлеющий разряд Тлеющий разряд возникает при низких давлениях (в вакуумных трубках). Для разряда характерна большая напряженность электрического поля и соответствующее ей большое падение потенциала вблизи катода. Его можно наблюдать в стеклянной трубке с впаянными у концов плоскими металлическими электродами. Вблизи катода располагается тонкий светящийся слой, называемый катодной светящейся пленкой Электрический ток в газах

Конспект 26. Электрический ток в различных средах.

6. Электрический ток в металлах

У металлов электронная проводимость.
– сила тока в сечении металлического проводника, А
Где e – элементарный заряд, Кл
– концентрация электронов проводимости,
S – площадь поперечного сечения проводника, м²
– средняя скорость движения электронов, м/с

7. Зависимость сопротивления металлов от температуры

Замечание . При увеличении температуры сопротивление металлического проводника растет.
– сопротивление металлического проводника при данном изменении температур относительно 0° C, Ом
Где – сопротивление при 0º C, Ом
∆T – разность температур относительно 0º C, К=º C
α – температурный коэффициент сопротивления (табл.),
– удельное сопротивление металла при данном изменении температур относительно 0º C, Ом∙м
Где – удельное сопротивление при 0º C, Ом∙м
Определение . Сверхпроводимость – явление уменьшения сопротивления до нуля при охлаждении до определенной низкой температуры некоторых веществ.

8. Электрический ток в растворах и расплавах электролитов

Определение. Электролиты – это вещества, растворы или расплавы которых проводят электрический ток.
Электролиты имеют ионную проводимость.
Замечание . При увеличении температуры сопротивление электролита уменьшается.
Определение. Электролитическая диссоциация – процесс образования ионов в электролите при его растворении или плавлении.
Определение. Электролиз – совокупность процессов, протекающих на электродах, погружённых в электролит, при прохождении электрического тока. В результате этих процессов на электродах выделяются вещества, входящие в состав электролита.
Замечание. Катод, присоединен к «-» полюсу источника, анод – к «+», поэтому на катоде откладываются положительные ионы вещества (катионы), а на аноде отрицательные (анионы).

Законы Фарадея:
1) Масса вещества, выделившегося на электроде при электролизе прямо пропорциональна величине заряда, переданного на этот электрод.
масса вещества, выделившегося на электроде, кг
Где k – электрохимический эквивалент выделившегося вещества (табл. и расч.), кг/Кл
q – заряд, переданный на электрод, Кл
– электрохимический эквивалент, кг/Кл
Где M – молярная масса иона, кг/моль
n – валентность иона, ед
– расписанная форма закона электролиза Фарадея, кг
Где I – сила тока при электролизе, А
t – время процесса электролиза, с
Замечание. Иногда используются следующие обозначения при записи формулы электрохимического эквивалента:
– заряд иона, Кл
– постоянная Фарадея, Кл/моль
2) Массы различных веществ, которые выделяются при прохождении одинакового заряда, пропорциональны их химическим эквивалентам.
Замечание. Применение электролиза: рафинирование, гальваностегия (хромирование, никелирование), гальванопластика.

9. Электрический ток в полупроводниках

Определение. Полупроводники – это вещества, у которых концентрация свободных зарядов больше, чем в диэлектриках, но меньше, чем в проводниках.
В чистых полупроводниках электронно-дырочная проводимость.
Замечание. При увеличении температуры сопротивление полупроводника уменьшается.
Определение . Дырка – вакантное место, которое может быть занято электроном, т.е. носитель положительного заряда.
Примесная проводимость полупроводников:
1) р-типа (дырочная проводимость) создается акцепторными примесями.
Пример. В полупроводник (Ge,Si) вводится вещество меньшей валентности (In,Ga).
2) n-типа (электронная проводимость) создается донорными примесями.
Пример. В полупроводник (Ge,Si) вводится вещество большей валентности (P,As).
Замечание. Использование полупроводников: полупроводниковые диоды, транзисторы.

10. Электрический ток в газах

В газах электронно-ионная проводимость.
Виды разрядов в газах:
1) Определение . Несамостоятельный газовый разряд – это разряд, который возникает и протекает только с использованием ионизатора (высокая температура, рентгеновское или космическое излучения).

2) Определение. Самостоятельный газовый разряд – это разряд, который возникает и проходит без сторонних причин (без ионизатора).
Замечание. Самостоятельный разряд может протекать при атмосферном давлении, тогда для этого необходимо сильное электрическое поле, или при слабом электрическом поле при условии низкого давления. Основной механизм, который приводит к самостоятельному разряду, называют ионизацией электронным ударом.
Виды самостоятельных газовых разрядов:

11. Электрический ток в вакууме

Электрический ток в вакууме обусловлен движением электронов, поэтому в нем электронная проводимость. Это явление принято рассматривать на примере термоэлектронной эмиссии.
Определение. Термоэлектронная эмиссия – явление вырывания электронов с поверхностей тел под действием высокой температуры.
Замечание. Наиболее показательно явление термоэлектронной эмиссии демонстрируется на принципе работы вакуумного диода и электронно-лучевой трубки.
Вакуумный диод – вакуумная двухэлектродная электронная лампа. Пропускает ток только в одном направлении.



Электронно-лучевая трубка – устройство для формирования остронаправленного электронного пучка для преобразования электрического сигнала в световой.

Электрический ток в металлах

Металлы являются хорошими проводниками электричества. Это обусловлено их внутренним строением. У всех металлов внешние валентные электроны слабо связаны с ядром, и при объединении атомов в кристаллическую решетку эти электроны становятся общими, принадлежащими всему куску металла.


Носителями заряда в металлах являются электроны .

Электроны в металлах при помещении их в электрическое поле движутся с постоянной средней скоростью, пропорциональной напряженности поля.

Зависимость сопротивления проводника от температуры

При повышении температуры у электронов проводимости увеличивается скорость теплового движения, что приводит к увеличению частоты столкновений с ионами кристаллической решетки и, тем самым, к росту сопротивления.

Сверхпроводимость - явление резкого уменьшения до нуля сопротивления проводника при охлаждении до критической температуры (зависящей от рода вещества).

Сверхпроводимость - это квантовый эффект. Объясняется он тем, что при низких температурах макроскопическое число электронов ведут себя как единый объект. Они не могут обмениваться с кристаллической решеткой порциями энергии, меньшими их энергии связи, поэтому рассеивания тепловой энергии не происходит, что и означает отсутствие сопротивления.

Такое объединение электронов возможно при образовании ими бозонных (куперовских) пар - коррелированного состояния электронов с противоположными спинами и импульсами.



Эффект Мейснера - вытеснение магнитного поля из сверхпроводника. Внутри проводника в сверхпроводящем состоянии циркулируют незатухающие токи, создающие магнитное поле, противоположное внешнему. Сильное магнитное поле разрушает сверхпроводимость.

Электрический ток в жидкостях

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества


Достигнув катода, ионы меди нейтрализуются избыточными электронами катода и превращаются в нейтральные атомы, оседающие на катоде. Ионы хлора, достигнув анода, отдают по одному электрону. Хлор выделяется на аноде в виде пузырьков.


Закон электролиза был экспериментально установлен английским физиком М. Фарадеем в 1833 году (закон Фарадея )



m - масса выделившегося в результате электролиза чистого вещества

k - электрохимический эквивалент вещества

Здесь N A - постоянная Авогадро, M = m 0 N A - молярная масса вещества,
F = eN A =96485 Кл/моль - постоянная Фарадея

Постоянная Фарадея численно равна заряду, который необходимо пропустить через электролит для выделения на электроде одного моля одновалентного вещества

Закон Фарадея для электролиза



Электрический ток в газах

При обычных условиях все газы являются диэлектриками, то есть не проводят электрического тока. Этим свойством объясняется, например, широкое использование воздуха в качестве изолирующего вещества. Принцип действия выключателей и рубильников как раз и основан на том, что размыкая их металлические контакты, мы создаем между ними прослойку воздуха, не проводящую ток.

Однако при определенных условиях газы могут становиться проводниками. Например, пламя, внесенное в пространство между двумя металлическими дисками (см. рисунок), приводит к тому, что гальванометр отмечает появление тока. Отсюда следует вывод: пламя, то есть газ, нагретый до высокой температуры, является проводником электрического тока.

Нагревание - не единственный способ превращения газа в проводник. Вместо пламени можно использовать ультрафиолетовое или рентгеновское излучение, а также поток альфа-частиц или электронов. Опытами установлено, что действие любой из этих причин приводит к ионизации молекул газа.

Прохождение тока через газы называют газовым разрядом. Только что мы рассмотрели пример так называемого несамостоятельного разряда. Он так называется потому, что для его поддержания требуется какой-либо ионизатор - пламя, излучение или поток заряженных частиц. Опыты показывают, что если ионизатор устранить, то ионы и электроны вскоре воссоединяются (говорят: рекомбинируют), вновь образуя электронейтральные молекулы. В результате газ перестает проводить ток, то есть становится диэлектриком.

Самостоятельная и несамостоятельная проводимость газов

Для того чтобы сделать газ проводящим, нужно тем или иным способом внести в него или создать в нем свободные носители заряда - заряженные частицы. При этом возможны два случая: либо эти заряженные частицы создаются действием какого-нибудь внешнего фактора или вводятся в газ извне - несамостоятельная проводимость, либо они создаются в газе действием самого электрического поля, существующего между электродами - самостоятельная проводимость.

В случае несамостоятельной проводимости, при небольших значениях U график имеет вид прямой, т.е. закон Ома приближенно сохраняет силу; с ростом U кривая загибается с некоторого напряжения и переходит в горизонтальную прямую.

Это означает, что начиная с некоторого напряжения, ток сохраняет постоянное значение, несмотря на увеличение напряжения. Это постоянное, не зависящее от напряжения значение силы тока называют током насыщения.

Несамостоятельный газовый разряд - разряд, существующий только под действием внешних ионизаторов.

При увеличении напряжения возникает ударная ионизация - явление выбивания электронов из нейтральных молекул - число носителей заряда увеличивается лавинообразно. Возникает самостоятельный разряд.

Самостоятельный газовый разряд - разряд, существующий после удаления внешних ионизаторов.

Процессы, влияющие на проводимость газов

Термическая ионизация - при столкновении нейтральных атомов происходит выбивание электронов и превращение атомов в положительные ионы

Ионизация излучением (фотоионизация) - распад атома на электрон и положительный ион под действием света

Ионизация электронным ударом - выбивание ускоренным электроном из атома электрона с образованием положительного иона



Вторичная электронная эмиссия с катода - выбивание положительными ионами электронов из катода



Термоэлектронная эмиссия - излучение нагретым металлом электронов


Тлеющий разряд: При давлении газа в несколько десятых миллиметра ртутного столба разряд имеет типичный вид, схематически изображённый на рис. Это ток в ионизированном газе, а точнее сказать в низкотемпературной плазме. Тлеющий разряд образуется при прохождении тока через разряженный газ. Как только напряжение превосходит определённое значение, газ в колбе ионизирует и происходит свечение. Это уже по сути электрический ток не столько в газе, сколько в плазме. Цвет свечения газа (плазмы) зависит от вещества газа.


Искровой разряд: При достаточно большой напряженности поля (около 3 МВ/м) между электродами появляется электрическая искра, имеющая вид ярко светящегося извилистого канала, соединяющего оба электрода. Газ вблизи искры нагревается до высокой температуры и внезапно расширяется, отчего возникают звуковые волны, и мы слышим характерный треск. Происходит при обычных условиях, при обычном атмосферном давлении, точно также как и тлеющий разряд происходит в следствие ионизации газа, но при высоком напряжении, в отличии от дугового разряда, где в первую очередь важна высокая плотность тока.

Коронный разряд: происходит в сильном электрическом поле с высокой напряжённостью, достаточной, чтобы вызвать ионизацию газа (или жидкости). Электрическое поле при этом бывает не однородным, где-то напряжённость значительно больше. Образуется градиент (различие) потенциалов поля и там где потенциал больше, ионизация газа идёт сильнее, интенсивнее, затем поток ионов доходит до другой части поля, тем самым образуя поток электричества. В результате образуется коронный газовый разряд причудливых форм, в зависимости от геометрии проводников — источников напряжённости поля.

Дуговой разряд: представляет собой электрический пробой газа, которой в дальнейшем становится постоянным плазменным разрядом — дугой, образуется электрическая дуга. Дуговой разряд характеризуется более низким напряжением, чем тлеющий разряд. Поддерживается в основном за счёт термоэлектронной эмиссии, когда из электродов высвобождаются электроны. Старое название такой дуги «вольтовая дуга». Отличительной особенностью такой дуги является высокая плотность тока и низкое напряжение, которое ограничено источником тока. Для того, чтобы создать такую дугу, электроды сближаются, происходит пробой, а затем они раздвигаются.

Электрический ток в различных средах к

Экспериментально было доказано, что носителями тока в металлах являются электроны. В отсутствии электрического поля электроны движутся хаотически, и ток в проводнике не возникает. Под действием внешнего электрического поля движение электронов становится упорядоченным, и в проводнике возникает электрический ток. Сила тока I в проводнике выражается формулой:

где e - заряд электрона, v - скорость упорядоченного движения электронов, S - площадь поперечного сечения проводника.

Если измерять сопротивление металлического проводника при различных температурах, то можно заметить, что сопротивление линейно растет с увеличением температуры. Зависимость сопротивления R от температуры t выражается формулой:

где R 0 - сопротивление проводника при температуре 0°С, α - температурный коэффициент. Аналогичный вид имеет формула и для удельного сопротивления ρ:

где ρ 0 - удельное сопротивление проводника при температуре 0°С.

В области низких температур сопротивление металлического проводника скачком падает до нуля. Это явление называется сверхпроводимостью.

Собственная проводимость полупроводников (проводимость чистых полупроводников) осуществляется перемещением свободных электронов (электронная проводимость) и перемещением связанных электронов на вакантные места-дырки (дырочная проводимость). Проводимость полупроводников сильно зависит от наличия примесей в нем. Примеси, которые отдают лишние валентные электроны, называются донорными. В таком полупроводнике электроны являются основными носителями тока, а дырки-неосновными, а сам полупроводник называется полупроводником n-типа. Примером такой примеси служит мышьяк для кремния. Примеси, которым не хватает валентных электронов, называются акцепторными. В таком полупро

воднике дырки являются основными носителями тока, а электроны-неосновными, а сам полупроводник называется полупроводником р-типа. Примером такой примеси служит индий.

Полупроводники нашли широкое применение в радиотехнике. На основе полупроводников изготовляют диоды, транзисторы, термисторы, фоторезисторы и др.

Чтобы создать ток в вакууме, необходим источник создания носителей тока. Действие такого источника основывается на явлении термоэлектронной эмиссии, которое заключается в том, что сильно нагретые тела испускают электроны. Рассмотрим систему из двух электродов, один из которых нагрет до температуры, достаточной для термоэлектронной эмиссии. Вокруг нагретого электрода формируется так называемое электронное облако. Если мы подключим к отрицательному полюсу источника тока нагретый электрод (катод), а к положительному-холодный (анод), то в результате между электродами возникнет электрическое поле, напряженность E которого направлена к нагретому электроду. Под действием этого поля часть электронов из электронного облака движется к холодному электроду, в результате чего в цепи возникает ток. Если же теперь поменять полюсы источника тока, то под действием созданного электрического поля электроны будут двигаться к нагретому катоду, раннее покинув его. Ток в цепи не возникнет. Таким образом, мы имеем одностороннюю проводимость. На основе только что описанной системы изготавливают вакуумные диоды.

Носителями тока в растворах или расплавах электролитов являются положительно и отрицательно заряженные ионы. В таком случае проводимость называется ионной. Если сосуд с раствором или расплавом электролита включить в цепь, то положительные ионы будут двигаться к катоду, а отрицательные-к аноду. Движение ионов в растворе или в расплаве электролита сопровождается переносом вещества и выделением его на электродах. Процесс выделения вещества на электродах называется электролизом. Масса m вещества, выделившегося на электроде при электролизе, согласно закону Фарадея, прямо пропорциональна заряду q, прошедшему через раствор или расплав электролита: m = kq = kIt, где I - сила тока в цепи, t - время прохождения тока, k - электрохимический эквивалент данного вещества. Электрохимический эквивалент вещества зависит только от рода вещества и выражается формулой:

где e - заряд электрона, N A - число Авогадро, M - молярная масса вещества, n - валентность вещества.

При нормальных условиях газ является диэлектриком. Если же газ начать нагревать или облучать ультрафиолетовыми, рентгеновскими или другими лучами, то некоторая часть молекул газа распадется на положительные ионы и электроны. Это объясняется тем, что при одном из вышеописанных воздействий на газ молекулы начинают достаточно быстро двигаться для того, чтобы при столкновениях распасться. В результате газ становится проводником с ионно-электронной проводимостью. Протекание тока через газ называется газовым разрядом. Различают самостоятельный и несамостоятельный газовый разряд. Если при прекращении действия ионизатора (нагревание, излучения) прекратится и газовый разряд, то такой разряд принято называть несамостоятельным. Если же при прекращении действия ионизатора я и газовый разряд не прекратится, то такой разряд принято называть самостоятельным. Самостоятельный разряд возникает при очень больших напряжениях на электродах. Под действием созданного между электродами высокого электрического поля E электроны приобретают кинетическую энергию, пропорциональную длине их свободного пробега L.