Схемы соединения однофазных трансформаторов. Схемы соединений обмоток трехфазных трансформаторов


Трехфазный трансформатор имеет две трехфазные обмотки — высшего (ВН) и низшего (НН) напряжения, в каждую из которых входят по три фазные обмотки, либо фазы. Таким макаром, трехфазный трансформатор имеет 6 независящих фазных обмоток и 12 выводов с надлежащими зажимами, при этом исходные выводы фаз обмотки высшего напряжения обозначают знаками A , B , С, конечные выводы — X , Y , Z , а для подобных выводов фаз обмотки низшего напряжения используют такие обозначения: a, b, c, x, y, z.

Почти всегда обмотки трехфазных трансформаторов соединяют или в звезду -Y, или в треугольник — Δ (рис. 1).

Выбор схемы соединений находится в зависимости от критерий работы трансформатора. К примеру, в сетях с напряжением 35 кВ и поболее прибыльно соединять обмотки в звезду и заземлять нулевую точку, потому что при всем этом напряжение проводов полосы передачи будет в √3 раз меньше линейного, что приводит к понижению цены изоляции.

Рис.1

Осветительные сети прибыльно строить на высочайшее напряжение, но лампы накаливания с огромным номинальным напряжением имеют малую световую отдачу. Потому их целенаправлено питать от пониженного напряжения. В этих случаях обмотки трансформатора также прибыльно соединять в звезду (Y), включая лампы на фазное напряжение.

С другой стороны, исходя из убеждений критерий работы самого трансформатора, одну из его обмоток целенаправлено включать в треугольник (Δ).

Фазный коэффициент трансформации трехфазного трансформатора находят, как соотношение фазных напряжений при холостом ходе:

n ф = U фвнх / U фннх,

а линейный коэффициент трансформации, зависящий от фазного коэффициента трансформации и типа соединения фазных обмоток высшего и низшего напряжений трансформатора, по формуле:

n л = U лвнх / U лннх.

Если соединений фазных обмоток выполнено по схемам «звезда-звезда» (Y/Y) либо «треугольник-треугольник» (Δ/Δ), то оба коэффициента трансформации схожи, т.е. n ф = n л.

При соединении фаз обмоток трансформатора по схеме «звезда — треугольник» (Y/Δ) — n л = n ф√3 , а по схеме «треугольник-звезда» (Δ / Y) — n л = n ф / √3

Группа соединений обмоток трансформатора охарактеризовывает обоюдную ориентацию напряжений первичной и вторичной обмоток. Изменение обоюдной ориентации этих напряжений осуществляется соответственной перемаркировкой начал и концов обмоток.

Стандартные обозначения начал и концов обмоток высочайшего и низкого напряжения показаны на рис.1.

Разглядим сначала воздействие маркировки на фазу вторичного напряжения по отношению к первичному на примере однофазового трансформатора (рис. 2 а).


Рис.2

Обе обмотки размещены на одном стержне и имеют однообразное направление намотки. Будем считать верхние клеммы началами, а нижние — концами обмоток. Тогда ЭДС Ё1 и E2 будут совпадать по фазе и соответственно будут совпадать напряжение сети U1 и напряжение на нагрузке U2 (рис. 2 б). Если сейчас во вторичной обмотке принять оборотную маркировку зажимов (рис. 2 в), то по отношению к нагрузке ЭДС Е2 меняет фазу на 180°. Как следует, и фаза напряжения U2 изменяется на 180°.

Таким макаром, в однофазовых трансформаторах вероятны две группы соединений, соответственных углам сдвига 0 и 180°. На практике для удобства обозначения групп употребляют циферблат часов. Напряжение первичной обмотки U1 изображают минутной стрелкой, установленной повсевременно на цифре 12, а часовая стрелка занимает разные положения зависимо от угла сдвига меж U1 и U2. Сдвиг 0° соответствует группе 0, а сдвиг 180° — группе 6 (рис. 3).

Рис.3

В трехфазных трансформаторах можно получить 12 разных групп соединений обмоток. Разглядим несколько примеров.

Пусть обмотки трансформатора соединены по схеме Y/Y (рис. 4). Обмотки, расположенные на одном стержне, будем располагать одну под другой.

Зажимы А и а соединим для совмещения возможных диаграмм. Зададим положение векторов напряжений первичной обмотки треугольником АВС. Положение векторов напряжений вторичной обмотки будет зависеть от маркировки зажимов. Для маркировки на рис. 4а, ЭДС соответственных фаз первичной и вторичной обмоток совпадают, потому будут совпадать линейные и фазные напряжения первичной и вторичной обмоток (рис. 4, б). Схема имеет группу Y/Y — О.

Рис. 4

Изменим маркировку зажимов вторичной обмотки на обратную (рис. 5. а). При перемаркировке концов и начал вторичной обмотки фаза ЭДС изменяется на 180°. Как следует, номер группы изменяется на 6. Данная схема имеет группу Y/Y — б.

Приводятся в таблице 1.

Таблица 1

Обозначения начал и концов обмоток трансформатора

Наименование обмоток Однофазные трансформаторы Трехфазные трансформаторы

Обмотки высшего напряжения (ВН):
начала ………………………………………
концы ………………………………………
Обмотки низшего напряжения (НН):
начала ………………………………………
концы ………………………………………
Обмотки среднего напряжения (СН):
начала ………………………………………
концы ………………………………………


A
X

a
x

A m
X m


A , B , C
X , Y , Z

a , b , c
x , y , z

A m , B m , C m
X m , Y m , Z m

Зажимы нулевой точки при соединении в звезду обозначаются О , О m , о .

Схемы соединения обмоток трехфазных трансформаторов

В большинстве случаев обмотки трехфазных трансформаторов соединяются либо в звезду (Y), либо в треугольник (Δ).

Выбор схемы соединения обмоток зависит от ряда причин. Например, для сетей с напряжением 35 кВ и более выгодно соединить обмотку трансформатора в звезду и заземлить нулевую точку, так как при этом напряжение выводов трансформатора и проводов линии передачи относительно земли будет всегда в √3 раза меньше линейного, что приводит к снижению стоимости изоляции. Осветительные лампы накаливания более низкого напряжения имеют большую световую отдачу, а осветительные сети выгодно строить на более высокое напряжение. Поэтому вторичные обмотки трансформаторов, питающих осветительные сети, соединяются обычно в звезду и осветительные лампы включаются на фазное напряжение – между линейными и нулевыми проводниками. В ряде случаев, когда ток обмотки невелик, при соединении в звезду обмотки получаются более дешевыми, так как число витков при этом уменьшается в √3 раза, а сечение проводов увеличивается также в √3 раза, вследствие чего трудоемкость изготовления обмотки и стоимость обмоточного провода уменьшаются. С другой стороны, с точки зрения влияния высших гармоник и поведения трансформатора при несимметричных нагрузках целесообразно соединять одну из обмоток трансформатора в треугольник.

Рисунок 1. Соединение трехфазной обмотки зигзагом

В некоторых случаях применяется также соединение обмоток по схеме зигзага (рисунок 1), когда обмотки разделяется на две части, которые располагаются на разных стержнях и соединяются последовательно. При этом вторая половина обмотки подключается по отношению к первой встречно (рисунок 1, а ), так как в этом случае (э. д. с.) фазы будет в √3 раза больше (рисунок 1, б ), чем при согласном включении (рисунок 1, в ). Однако при встречном включении половин обмотки ее э. д. с. (√3 E 1) будет все же в 2 / √3 = 1,15 раза меньше, чем при расположении обеих половин на одном стержне (2 E 1). Поэтому расход обмоточного провода при соединении зигзагом увеличивается на 15%. Вследствие этого используется только в специальных случаях, когда возможна неравномерная нагрузка фаз с наличием токов нулевой последовательности.

Группы соединений обмоток

Для включения трансформатора на параллельную работу с другими трансформаторами имеет значение между э. д. с. первичной и вторичной обмоток. Для характеристики этого сдвига вводится понятие о .

Рисунок 2. Группы соединений однофазного трансформатора

На рисунке 2, а показаны обмотки однофазного трансформатора, намотанные по левой винтовой линии и называемые поэтому "левыми", причем у обеих обмоток начала A , a находятся сверху, а концы X , x – снизу. Будем считать э. д. с. положительной, если она действует от конца обмотки к ее началу. Обмотки на рисунке 2, а сцепляются с одним и тем же потоком. Вследствие этого э. д. с. этих обмоток в каждый момент времени действуют в одинаковых направлениях – от концов к началам или наоборот, то есть они одновременно положительны или отрицательны. Поэтому э. д. с. EA и Ea совпадают по фазе, как показано на рисунке 2, а . Если же у одной из обмоток переменить начало и конец (рисунок 2, б ), то направление ее э. д. с., действующей от конца к началу, изменится на обратное и э. д. с. EA и Ea будут иметь сдвиг 180°. Такой же результат получится, если на рисунке 2, а одну из обмоток выполнит "правой".

Для обозначения сдвига фаз обмоток трансформатора векторы их линейных э. д. с. уподобляют стрелкам часового циферблата, причем вектор обмотки ВН принимают за минутную стрелку и считают, что на циферблате часов она направлена на цифру 12, а вектор обмотки НН принимают за часовую стрелку. Тогда на рисунке 2, а часы будут показывать 0 или 12 часов, и такое соединение обмоток поэтому называется группой 0 (ранее в этом случае применялось название "группа 12"). На рисунке 2, б часы будут показывать 6 часов, и такое соединение называется группой 6. Соответственно соединение обмоток однофазных трансформаторов согласно рисунку 2, а обозначается I/I-0, а согласно рисунку 2, б – I/I-6. В России стандартизированы и изготовляются однофазные трансформаторы только соединением I/I-0.

Рисунок 3. Трехфазный трансформатор со схемой и группой соединений Y/Y-0

Рассмотрим теперь трехфазный трансформатор с соединением обмоток ВН и НН в звезду, причем предположим, что 1) обмотки ВН и НН имеют одинаковую намотку (например, "правую"); 2) начала и расположены одинаково (например, концы снизу, а начала сверху); и 3) одноименные обмотки (например, A и a , а также B и b , C и c ) находятся на общих стержнях (рисунок 3, а ). Тогда звезды фазных э. д. с. и треугольники линейных э. д. с. будут иметь вид, показанный на рисунке 3, б . При этом одноименные векторы линейных э. д. с. (например, E AB и E ab ) направлены одинаково, то есть совпадают по фазе, и при расположении их на циферблате часов, согласно изложенному правилу, часы будут показывать 0 часов (рисунок 3, в ). Поэтому схема и группа соединений такого трансформатора обозначается Y/Y-0.

Если на рисунке 3, а произвести круговую перемаркировку (или перестановку) фаз обмотки НН и разместить фазу a на среднем стержне, фазу b – на правом и c – на левом, то на векторной диаграмме НН (рисунок 3, б ) произойдет круговая перестановка букв a , b , c по часовой стрелке. При этом получится группа соединений 4, а при обратной круговой перестановке будет группа соединений 8. Если переменить местами начала и концы обмоток, то получатся еще группы соединений 6, 10 и 2. Значит, при соединении по схеме Y/Y возможно шесть групп соединений, причем все они четные. Такие же группы соединений можно получить при схеме соединений Δ/Δ.

Допустим теперь, что обмотки соединены по схеме Y/Δ, как показано на рисунке 4, а , и соблюдены те же условия, которые были оговорены для рисунка 3, а . Тогда векторные диаграммы э. д. с. обмоток ВН и НН будут иметь вид, показанный на рисунке 4, б . При этом одноименные линейные э. д. с. (напрмер, E AB и E ab ) будут сдвинуты на 30° и расположатся на циферблате часов, как показано на рисунке 4, в . Соединение обмоток такого трансформатора обозначаются Y/Δ-11. При круговых перестановках фаз и при перемаркировке начал и концов одной из обмоток (или при установке вместо перемычек ay , bz , cx в треугольнике на рисунке 4, а перемычек az , bx , cy ) можно получить также другие нечетные группы: 1, 3, 5, 7 и 9.

Большой разнобой в схемах и группах соединений изготовляемых трансформаторов нежелателен. Поэтому ГОСТ 11677-85,"Трансформаторы силовые. Общие технические условия", предусматривает изготовление трехфазных силовых трансформаторов со следующими группами соединений обмоток: Y/Y0-0, Y0/Y-0, Y/Δ-11, Y0/Δ-11, Y/Z0-11, Δ/Y0-11, и Δ /Δ-0. При этом первым обозначено соединение обмотки ВН, вторым – соединение обмотки НН, а индекс "0" указывает на то, что наружу выводится нулевая точка обмотки.

1. Трансформаторы

Однофазные трансформаторы

Конструкция и принцип действия трансформатора

Трансформатор - это статический электромагнитный аппарат, преобразующий электрическую энергию напряжения переменного тока с одними параметрами в электрическую энергию с другими параметрами (частота, напряжение, фазность, форма напряжения и.т.д.).
Принцип действия трансформатора основан на законе электромагнитной индукции. Рассмотрим работу трансформатора по логической цепочке на "холостом" ходу. На рисунке изображена конструкция однофазного трансформатора,

Здесь Ф 0 основной магнитный поток (магнитопровод предназначен для направления и концентрации основного магнитного потока);
Ф S1 Ф S2 потоки рассеяния основного магнитного потока в обмотках первичной и вторичной цепей. Они зависят от сцепления обмоток (удаленности друг от друга), от расположения их на стержнях, а также от контура прохождения основного потока. Представим принцип действия трансформатора в виде логической цепочки:

1 - При подключении трансформатора к первичной цепи переменного тока возникает ток (по закону Ома), обратно пропорциональный входному сопротивлению трансформатора:

2 - При протекании тока по обмотке трансформатора, намотанной на замкнутый магнитопровод, возникает напряженность магнитного поля (H):

где F - магнитодвижущая сила, l ср - средняя линия магнитопровода, W 1 - число витков в первичной цепи. Магнитопровод трансформатора необходимо выполнять из ферромагнитного материала.

3 - Под действием напряженности магнитного поля Н в магнитопроводе (сердечнике) трансформатора возникает основной магнитный поток Ф 0 , прямо пропорциональный сечению магнитопровода (Sмаг). Магнитная индукция Вх является рабочей точкой на основной кривой намагничивания и выбирается на линейном участке, чтобы при намагничивании сердечника постоянным током магнитопровода не было захода ее в область насыщения.


4 - При прохождении основного магнитного потока по сердечнику в первичной цепи возникает ЭДС самоиндукции, а во вторичной цепи ЭДС взаимоиндукции, которые определяются по закону магнитодвижущих сил - закону Максвелла - Фарадея:

где ЭДС - это изменение потока сцепления во времени.

Логическая цепочка работы трансформатора под нагрузкой

При подключении нагрузки во вторичной цепи начинает протекать ток I 2 , при этом в сердечнике возникает размагничивающий магнитный поток, противоположный по направлению к основному. Это приводит к уменьшению ЭДС в первичной цепи. В электромагнитной системе нарушается равновесие (), что приводит к возрастанию потребляемого тока из сети I 1 , т.е. к самобалансированию системы и поток Ф 0 восстанавливается:

Отсюда следует уравнение магнитодвижущих сил (МДС):

Где - ток цепи намагничивания (ток "холостого" хода).

Уравнение ЭДС трансформатора

Рассмотрим его для низкочастотного трансформатора, в котором напряжение питания изменяется по синусоидальному закону:

При анализе работы однофазного трансформатора используют связь действующего значения ЭДС с конструктивными параметрами трансформатора:

где K Ф - коэффициент формы, для низкочастотного трансформатора имеем синусоидальную форму напряжения K Ф =1,11, для высокочастотного трансформатора форма напряжения - прямоугольная и K Ф =1.
S маг.ак =S маг. ·K маг - активная площадь сердечника. Под активной площадью понимается не геометрическа площадь сечения, чистая площадь магнитного материала. Для борьбы с вихревыми токами сердечник изготавливается в виде пластин или лент с лаковым покрытием. Поэтому коэффициент K маг =0,9…0,98 , он учитывает процентное содержание магнитного материала в сечении сердечника.
При работе трансформатора на высокой частоте прямоугольная форма напряжения объясняется использованием магнитомягких материалов, таких как феррит, альсифер, пермаллой, обладающие узкой прямоугольной петлей гистерезиса.
При неправильном проектировании трансформатора (выборе рабочей точки Вх на участке близком к области насыщения) происходит перегрев сердечника магнитопровода, например при понижении частоты напряжения питания или повышении уровня напряжения питания.

Конструктивные особенности трансформатора

Однофазные трансформаторы классифицируются по типу магнитопровода на броневые, стрежневые и тороидальные .


Броневые сердечники используются при мощности менее 150ВЧА и частота до 8 кГц, стрежневые при мощности от 150 до 800 [ВЧА] и частоте до 8 кГц, тороидальные - при мощности 250 [ВЧА], частоте свыше 8 кГц. В броневом сердечнике трансформатора основной магнитный поток раздваивается, что приводит к увеличению потока рассеяния. Расположение обмоток на одном (среднем) стержне трансформатора улучшает их сцепление и защищает обмотки от механических воздействий и электромагнитных помех. Такая конструкция обладает наибольшим рассеиванием основного потока (Ф 0 ), поэтому используется при малых мощностях.
В стержневом сердечнике трансформатора для улучшения сцепления обмоток первичную и вторичную обмотки разводят по двум стержням и при намотке чередуют послойно. В такой конструкции поток рассеяния меньше, чем в броневом.
Тороидальная конструкция сердечника трансформатора обладает наименьшим потоком рассеяния, благодаря круговому движения силовой линии основного магнитного потока Ф0 и хорошему сцеплению обмоток (из- за намотки по всему тороиду). Ограничение по мощности связано с плохим охлаждением обмоток и технологическими трудностями изготовления тороида. Поперечное сечение тороида и стержней приближается к округлой форме, что позволяет экономить материал сердечника.
Сердечники магнитопроводов изготавливаются в виде лент, пластин или прессуют из ферромагнитного порошка с добавлением кремния (небольшой процент, так как он придает хрупкость конструкции) для ограничения вихревых токов, перпендикулярных основному потоку. Низкочастотные трансформаторы выполняются из холоднокатанной (анизотропной, изотропной) стали, а также горячекатанной стали.


Холоднокатанная сталь обладает высокой магнитной проницаемостью и малыми удельными потерями на единицу веса, но является дорогостоящим металлом. В анизотропной холоднокатанной стали направление проката диктует направление силовой линии магнитного потока (Ф 0 ) потому, что в перпендикулярном направлении ухудшаются магнитные свойства материала. Горячекатанная сталь более экономичная, но имеет более высокие удельные потери и более низкую магнитную проницаемость (µ д). В высокочастотных трансформаторах в качестве материала сердечника используют следующее: феррит, пермаллой, альсифер. Альсифер используется для дросселей сглаживающих фильтров, т.к. имеется запас по намагниченности, пермаллой подвержен механическим воздействиям. Феррит обладает широким диапазоном рабочих частот, поэтому широко используется в импульсных трансформаторах.
Обмотки трансформатора изолируются друг от друга. В конструкции трансформатора они размещаются на каркасе и используется межвитковая, межслойная изоляция (лак, волокно, х/б нитки и.т.д.). Тип изоляции зависит от рабочей температуры. Провода для обмоток имеют прямоугольное или круглое сечение, прямоугольные используются при повышенных токах нагрузки. При проектировании трансформаторов вводиться понятие плотности тока.

Выбор плотности тока зависят от расположения обмотки на магнитопроводе и типа магнитопровода.

Схема замещения трансформатора

Для упрощения анализа электромагнитных процессов в трансформаторе вводится схема замещения, в которой магнитная связь заменяется электрической и коэффициент трансформации n

Коэффициент трансформации является и коэффициентом приведения вторичной цепи к первичной. На рисунке показана схема замещения трансформатора:

где введены такие обозначения:

R 0 - учитывает потери в магнитопроводе (на вихревые токи и на гистерезис);

X 0 - учитывает намагниченность материала сердечника и зависит от марки материала (в идеальном трансформаторе Z 0);

R 1 , R 2 - учитывают потери на нагрев обмоток первичной и вторичной цепей;

X S1 , X S2 - индуктивности рассеяния основного потока в обмотках первичной и вторичной цепей;

Для получения соотношения между реальными и приведенными параметрами, воспользуемся равенством полных мощностей, активных мощностей и углов потерь: , , .

Запишем систему уравнений для схемы замещения:

Опыт холостого хода

Условия проведения опыта : на вход подается номинальное напряжение U 1ном, вторичная цепь размыкается.

Измеряемыми параметрами являются номинальное напряжение вторичной цепи (U 02) и первичной цепи (U 01) (их называют напряжением холостого хода), ток первичной цепи (I 01 - ток холостого хода), активная мощность или потери в магнитопроводе (P 01). Если устанавливаем измеритель коэффициента мощности, то активная мощность рассчитывается из соотношения:

В этом опыте рассчитываются - коэффициент трансформации (n) и значение процентного соотношения тока холостого хода к номинальному току первичной цепи

Это значение нормируется в процентах в зависимости от области использования трансформатора, его мощности, частоты преобразования.

Параметры схемы замещения поперечного плеча рассчитываются по соотношениям:

Если из опыта значение тока холостого хода получилось больше 30%, то значит завышено входное напряжение, или при проектировании завышена величина магнитной индукции. Для устранения этого потребуется измененить сечение магнитопровода или перемотать обмотки.
В опыте холостого хода схема замещения трансформатора принимает вид:

Так как параметры продольного плеча значительно меньше, чем параметры поперечного плеча схемы замещения и ток "холостого" хода значительно меньше номинального тока первичной цепи, то в схеме замещения трансформатора на "холостом" ходу пренебрегаем параметрами X S1 и R 1 .

Опыт короткого замыкания


Опыт "короткого" замыкания проводится при пониженном напряжения питания, так как ток в обмотках трансформатора может превысить номинальные значения при повышении напряжения. Необходимо плавно увеличивать напряжение на выходе ЛАТРА до достижения номинальных токов в цепях. Измеряемыми параметрами являются: номинальные токи в цепях I К1 , I K2 , напряжение короткого замыкания первичной цепи (U К1) и потери в обмотках. При измерении коэффициента мощности потери определяются из выражения:

Расчетными параметрами является процентное соотношение напряжения короткого замыкания по отношению к номинальному входному напряжению:

Внутреннее сопротивление трансформатора (сопротивление продольного плеча схема замещения) определяется из опыта "короткого" замыкания:

;;

При переходе к реальным параметрам трансформатора принимается равенство:и.

Схема замещения трансформатора в опыте "короткого" замыкания приводится в виде:

Внешняя характеристика трансформатора

Под внешней характеристикой понимается зависимость выходного напряжения от тока нагрузки с учетом его характера (активная - R, активно- емкостная - RC, активно - индуктивная - RL). Схема замещения трансформатора принимает вид:

По второму закону Кирхгофа запишем уравнение для схемы замещения трансформатора: U 2 = U 1 - IZ k = U 1 - I (jX k + R k) .

Для объяснения закона внешних характеристик для различных видов нагрузок построим векторную диаграмму для фиксированного значения тока нагрузки I=const.


При построении векторной диаграммы принимается такая условность: по часовой стрелке отставание вектора тока от вектора напряжения. При индуктивной нагрузке ток отстает от напряжения на угол j 1 , поэтому вектор напряжения U 1 повернут против часовой стрелки по отношению к вектору тока I; при емкостной нагрузке напряжение U 1 отстает от тока I 1 на угол j 3 , поэтому вектор напряжения U 1 повернут по часовой стрелки по отношению к вектору тока I.
При активной нагрузке вектор напряжения U 1 повернут против часовой стрелки по отношению к вектору тока I на небольшой угол j 2 из- за малой величины индуктивности нагрузки.
Вектор (- R k I) противоположен по направлению к вектору тока I. Так как X k - индуктивность рассеяния трансформатора, то вектор (-jX k I) перпендикулярен по отношению к вектору (-R k I) и имеет поворот против часовой стрелки.

Каждый из векторов U 2(1) , U 2(2) , U 2(3) получается в результате суммирования двух векторов U 1 и (- I Z k). Из векторной диаграммы видно, что при активной и индуктивной нагрузках происходит уменьшение напряжения во вторичной цепи трансформатора с увеличением тока I. Если нагрузка имеет емкостный характер, то напряжение увеличивается. При проектировании трансформатора необходимо учитывать характер нагрузки. Например, индуктивная нагрузка требует увеличивать количество витков во вторичной цепи с учетом понижения напряжения при работе под нагрузкой. Конденсаторы используются для компенсации реактивной составляющей в трансформаторах, они включаются в трехфазных трансформаторах параллельно в каждой фазе или между фазами, как показано на рисунке.


Энергетические показатели трансформатора

К энергетическим показателям трансформатора относятся: КПД трансформатора и коэффициент мощности.

КПД трансформатора - это отношение активной (полезной) мощности в нагрузке к потребляемой (активной) мощности трансформатора, т.е.

где, P маг =P гист +Р вих.токи - потери в магнитопроводе трансформатора. Они являются постоянными потерями, не зависящими от тока нагрузки, и включают в себя два вида потерь: потери на "гистерезис" (перемагничивание сердечника трансформатора) и потери на "вихревые" токи (круговые токи Фуко, перпендикулярные направлению основного магнитного потока).
Потери в магнитопроводе зависят от следующих параметров:

P маг =s 1 B x 2 f 2 G ,

где s1 - коэффициент, зависящий от типа ферромагнитного материала;

G - вес магнитопровода (в кг);

B x - величина магнитной индукция (определяемая положением рабочей точки на кривой намагничивания трансформатора).

С увеличением частоты преобразования возрастают магнитные потери, поэтому используют материалы с малыми удельными потерями и понижают рабочее значение магнитной индукции В х.
Потери на гистерезис определяются площадью петли гистерезиса:

Учитывая, что Р ОБ =I 2 R об - потери в обмотках.Получим соотношение для КПД в зависимости от коэффициента нагрузки b=I 2 /I 2ном.
Потери в магнитопроводе определяются из опыта "холостого хода" и равны P маг =P 10 . Мощность в нагрузке P 2 можно представить в виде

Потери в обмотках трансформатора равны:

где P 1К - потери определяемые из опыта "короткого замыкания".

Таким образом выражение для КПД принимает вид:

КПД будет иметь максимальное значение при

При проектировании трансформатора необходимо добиваться равенства потерь в магнитопроводе потерям в обмотках для обеспечения эффективной работы трансформатора. При расчета трансформатора за критерии оптимизации выбираются: КПД, габаритные размеры, стоимость и температурный режим работы трансформатора. При P маг >P об (b

Электромагнитная мощность трансформатора

Электромагнитная мощность - это полусумма электромагнитных мощностей всех обмоток трансформатора. Так как на первичную цепь приходится половина мощности, то при расчете электромагнитной мощности берут либо сумму мощностей всех вторичных цепей, либо мощность первичной цепи. При проектировании трансформатора вводят понятие габаритной мощности трансформатора - это связь электромагнитной мощности с параметрами трансформатора.

Для получения выражения для габаритной мощности трансформатора, воспользуемся следующими уравнениями:

уравнением ЭДС трансформатора -

понятием плотности тока j -

где S пр - сечение проводника обмотки трансформатора;

определением количества витков через сечение окна S ОК -

где, K ok - коэффициент, учитывающий заполнение окна магнитопровода обмотками, его низкое значение гарантирует попадание обмоток в окно при выборе сердечника K ok = (0,28 …. 0,34);

Площадь окна равна: S ок = c*h [см 2 ].

Подставим (1), (2), (3) в выражение для электромагнитной мощности и получим выражение для габаритной мощности:

P габ = 2 К ф К маг К ок B m f j S маг S ок.

При заданной мощности трансформатора определяют типоразмеры трансформатора, затем по уравнению ЭДС рассчитывается количество витков первичной и вторичной цепей.

Трехфазные трансформаторы

Это система, объединяющая три источника переменного тока, ЭДС которых сдвинуты друг относительно друга на 120°.Трансформирование трехфазного тока можно осуществить тремя однофазными трансформаторами, соединенными в трансформаторную группу. Обмотки первичной и вторичной цепей соединяются одним из способов: "звезда", "треугольник", "зигзаг".
На рисунке изображены временные зависимости для фазных и линейных ЭДС трехфазного трансформатора.


Рассмотрим способ соединения "звезда".
На рисунке изображена векторная диаграмма напряжений и условное обозначение схемы соединения обмоток трансформатора.


Точка на схеме трансформатора обозначает конец вектора ЭДС или начало обмотки. При соединении звездой линейные (I л) и фазные токи (I ф) одинаковы, потому что для тока, проходящего через фазную обмотку, нет иного пути, кроме линейного провода. Линейные напряжения (U л) больше фазных (U ф) в раза.

Соединение в звезду выполняется с нулевым выводом или без него, что является достоинством схемы соединения

Соединение в "треугольник":

При соединении треугольником U л = U ф, потому что каждые два линейных провода присоединены к началу и концу одной из фазных обмоток, а все фазные обмотки одинаковы. Линейные токи I л = I ф.
Мощности при соединениях звездой и треугольником определяются выражениями:

активная

реактивная

где j - угол сдвига фаз между напряжением и током.

Группа соединения трехфазного трансформатора

При определении группы соединения обмоток трансформатора пользуются циферблатом часов. Линейный вектор обмотки высшего напряжения (ВН) соответствует минутной стрелке циферблата часов и устанавливается на цифру 12, часовая стрелка соответствует линейному вектору ЭДС обмотки низкого напряжения (НН) и ее поворот по отношению к обмотке ВН определяет номер группы и угол поворота a =n*30 0 , где n - группа.
Определим группу соединения обмоток трансформатора для соединения "звезда-звезда". Для построения диаграммы условно объединяем одноименные выводы обмоток первичной (с) и вторичной (С) цепей трансформатора. Из построения видно, что номер группы соединения равен n = 180°/30° = 6 .


Определим группу соединения обмоток трансформатора для соединения "звезда-треугольник". Для построения диаграммы условно объединяем одноименные выводы обмоток первичной (а) и вторичной (А) цепей трансформатора. Из построения видно, что номер группы соединения равен n = j /30° =30°/30° = 1 .


Соединение вторичных обмоток трансформатора в зигзаг

Соединение зигзагом применяют чтобы нагрузку вторичных обмоток распределить более равномерно между фазами первичной сети, а также для расщепления фаз при создании многопульсных выпрямителей и в других случаях.
Для соединения зигзагом вторичная обмотка каждой фазы составляется из двух половин: одна половина расположена на одном стержне, другая - на другом. Конец полуобмотк, например х 1 соединен с концом y 2 и т.д. Начала полуобмоток а 2 , в 2 и с 2 соединены и образуют нейтраль. К началам а 1 , в 1 , с 1 присоединяют линейные провода вторичной сети. При таком соединении э.д.с. обмоток, расположенных на разных стержнях, сдвинуты на угол 120 0 .


Вектор E 3 является суммой двух векторов e"" 3 и e"" 1 . Вектор e""1 параллелен e" 1 и противоположен по направлению. Вектор e" 3 совпадает с направлением фазы с. Угол поворота j вектора ЭДС вторичной цепи по отношению к первичной зависит от соотношения витков W 21 /W 22 .

Конструкция трехфазных трансформаторов

Трехфазные трансформаторы изготавливаются в виде отдельных однофазных трансформаторов, объединенных в группу при повышенной мощности (свыше 60000 кВА). Такой тип получил название - трансформатор с раздельной магнитной системой. Трансформатор, у которого обмотки расположены на трех стержнях, называется трансформатором с объединенной магнитной системой.


В трехстержневом трансформаторе вследствие магнитной несимметрии магнитопровода, намагничивающие токи отдельных фазных обмоток не равны: намагничивающие токи крайних фаз (I ОА и I ОС) больше тока средней фазы (I ОВ).

Для уменьшения магнитной несимметрии трехстержневого манитопровода, т.е. уменьшения магнитного сопротивления потокам крайних фаз, сечение ярма делают больше.

Параллельная работа трансформаторов

Для увеличения мощности трансформаторы включают параллельно. Существуют условия параллельного включения трансформаторов:

1)Трансформаторы должны иметь одинаковые значения напряжения "холостого хода" или коэффициенты трансформации. При несоблюдении этого условия возникает уравнительный ток (IУР), обусловленный разностью вторичных напряжений DU,

где R вн1 , R вн2 - внутренние сопротивления трансформатора. При этом трансформатор с более высоким вторичным напряжением "холостого хода" оказывается перегруженным.

2)Трансформаторы должны принадлежать к одной группе соединений. Если это условие не выполняется, то появляется уравнительный ток, обусловленный разностной ЭДС трансформатора:

3)Трансформаторы должны иметь одинаковые значения напряжения короткого замыкания.Трансформатор с меньшим напряжением короткого замыкания перегружается.

Специальные трансформаторы

Трансформаторы напряжения

Измерительный трансформатор напряжения (ТН) применяется при измерениях в сетях переменного тока напряжением свыше 220 В. ТН представляет собой понижающий трансформатор с таким соотношением витков в первичной и вторичной обмотках, чтобы при номинальном первичном напряжении вторичное напряжение составляло 100В.

ТН работает в режиме, близком к режиму "холостого хода", т.е. I 2 = 0. Класс точности прибора зависит от выбора рабочей точки на петле гистерезиса (B m =0,1….0,2 Тл, I 1 =I 0). Для этого увеличивают количество витков первичной цепи. Соотношение витков в трансформаторе подбирается таким образом, чтобы получить во вторичной цепи U=100 B. Для обеспечения надежной работы ТН обязательно заземляется вторичная цепь и корпус трансформатора. Система уравнений для трансформатора имеет вид:

Так как U 1 = -E 1 , U 2 = E 2НОМ, то напряжение в первичнолй обмотке определяется выражением:

Трансформатор тока

Измерительный трансформатор тока (ТТ) применяется для включения амперметров и обмоток тока ваттметров, счетчиков энергии и фазометоров в цепях переменного тока, чаще всего в сильно точных (с большим значением тока).
ТТ работает в режиме, близком к "короткому замыканию". Первичная обмотка ТТ выполняется из провода большого сечения и включается в сеть последовательно (количество витков первичной цепи равно1). Вторичная обмотка - многовитковая.

Уравнение МДС имеет вид: I 1 W 1 + I 2 W 2 = I 0 W 1 ;
Точность тока измерительной цепи определяется выбором точки на петле гистерезиса (Bm=0,1…0,2Тл, I0 =0). Количество витков во вторичной цепи подбирается таким образом, чтобы во вторичной цепи протекал ток 5 А, откуда

Данный трансформатор является опасным при эксплуатации, так как нельзя размыкать вторичную цепь под нагрузкой. При размыкании цепи произойдет рост потерь в магнитопроводе в квадратичной зависимоти (В 2), что приведет к пробою изоляции и обслуживающий персонал может попасть под высокое напряжение.

Схемы трехфазных трансформаторов. По своей сути трехфазный трансформатор – это собранные на общем сердечнике три однофазных трансформатора.

Трансформатор — «трехфазник» имеет три обмотки низкого и три обмотки высокого напряжения; итого – шесть независимых фазных обмоток. Двенадцать соответствующих выводов маркируются следующим образом: начала фазных обмоток высокого напряжения обозначаются заглавными буквами A, B, C; концы этих обмоток – X, Y, Z. Аналогичные выводы низковольтных обмоток маркируются строчными буквами – a, b, c и x, y, z.

Схемы трехфазных трансформаторов:

Способы соединения обмоток трехфазных трансформаторов приведены на рис. 1. Их два – звездой (обозначается Y) и треугольником (∆).

Рис. 1

Подходящая схема соединения определяется условиями работы трансформатора. К примеру, при использовании в сетях с величиной напряжения более 35 кВ оптимальным является соединение обмоток «звездой» и заземление нулевой точки. При этом величина напряжения в линии электропередачи будет иметь величину, в √3 раз меньшую величины линейного напряжения, что позволяет снизить стоимость изоляции.

На высокое напряжение удобно строить осветительные сети. Но рассчитанные на большое напряжение лампы накаливания обладают пониженной световой отдачей, и приходится использовать пониженное напряжение. И в этом случае также оптимальным является соединение обмоток «звездой» и подключение ламп к фазному напряжению.

Однако для работы самого трехфазного трансформатора целесообразнее все же включать обмотки «треугольником».

Одними из основных характеристик трехфазного трансформатора являются фазный и линейный коэффициенты трансформации. Первый из них, фазный, равен отношению высокого и низкого напряжений холостого хода:

n ф = U фвнх / U фннх,

а второй, линейный, зависит от фазного коэффициента и способа соединения «высокой» и «низкой» обмоток трансфороматора:

n л = U лвнх / U лннх.

При соединении фазных обмоток однотипными способами, — ∆/∆ (треугольник-треугольник) или Y/Y (звезда-звезда) — оба коэффициента равны. Если же обмотки соединены по разным схемам (∆/Y или Y/∆),

n л = n ф /√3.

Группы соединений обмоток трансформатора

Группа соединений трансформаторных обмоток определяет взаимное ориентирование напряжений высоко- и низковольтных обмоток. Смена взаимной ориентации напряжений достигается соответствующей перекоммутацией концов и начал обмоток.

Рассмотрим на примере однофазного трансформатора, как влияет маркировка на фазу вторичного напряжения относительно первичного (рис. 2а).

Обе обмотки, намотанные в одном направлении, располагаются на одном стержне-сердечнике. Допустим, что начала обмоток на верхних клеммах, а концы – на нижних. В этом случае совпадут по фазе ЭДС E1 и E2; следовательно, совпадут и фазы напряжений сети U1 и нагрузки U2 (рис. 2б). если же изменить подключение вторичной обмотки на обратное, ЭДС нагрузки E2 изменит свою фазу на 180 о. Соответственно, на 180 о изменится и фаза напряжения U2.

Иными словами, в однофазном трансформаторе возможны соответствующие углам сдвига 0 о и 180 о группы соединений.

Для удобства группы обозначают, используя изображение циферблата часов. Постоянно установленная на двенадцати часах минутная стрелка символизирует напряжение на первичной обмотке; часовая стрелка может занимать различные, зависящие от угла сдвига фаз между первичным и вторичным напряжениями, положения. Сдвиг в 0 о соответствует «двенадцати», сдвиг в 180 о – «шести» (рис. 3).

Несложно подсчитать, что шесть обмоток трехфазного трансформатора позволяют получить двенадцать групп соединений. Проиллюстрируем это некоторыми примерами. Пусть, например, трансформаторные обмотки, располагающиеся на одном стержне одна под другой, соединяются по схеме Y/Y, как на рис. 4.

Чтобы совместить потенциальные диаграммы, соединим контакты A и a. Треугольником ABC задается положение векторов напряжений первичной трансформаторной обмотки. Направление векторов, соответствующих напряжениям вторичной обмотки, будет зависеть от подключения зажимов. Для приведенной на рис. 4а маркировки фазность ЭДС первичной и вторичной трансформаторных обмоток совпадают. Соответственно, совпадут фазные и линейные напряжения на первичной и вторичной обмотках (рис. 4б). Такая схема имеет группу подключения Y/Y-0.

Если теперь изменить подключение вторичной обмотки на противоположное (рис. 5а), ЭДС изменится на 180 о. Номер группы при этом станет 6, а схема называется Y/Y-6.

Если сделать круговую, по сравнению с рис. 4, перемаркировку зажимов (а→b , b→c, с→a), то фазы ЭДС вторичных обмоток сдвинутся на 120 о, и номер группы станет 4.

Рис. 6 рис. 7

При соединении обмоток по схеме «звезда-звезда» получаются четные номера групп, если обмотки соединяются по схеме «звезда-треугольник» — нечетные. Иллюстрирует это схема на рис. 7. На ней фазная ЭДС вторичной обмотки совпадает с линейной ЭДС, и треугольник abc повернут на 30 о относительно треугольника ABC. Данная группа имеет номер 11.

Групп соединений обмоток может быть двенадцать. Но на практике наиболее часто применяются всего две из них – Y/∆-11 и Y/Y-0.

Существуют три основных способа соединения фазовых обмоток каждой стороны трёхфазного трансформатора:

  • Δ-соединение , так называемое соединение треугольником, где три фазных обмотки соединены последовательно и образуют кольцо (или треугольник)
  • Y-соединение , так называемой соединение звездой, где все три обмотки соединены вместе одним концом каждой из обмоток в одной точке, называемой нейтральной точкой или звездой
  • Z-соединение , так называемое соединение зигзагом

Естественным выбором для самых высоких напряжений является Y-соединение. В целях защиты от перенапряжения или для прямого заземления имеется нейтральный проходной изолятор.

Соединение треугольником используется на одной стороне трансформатора, другая сторона должна быть соединена звездой, особенно в случаях, если нейтраль соединения звездой планируется для зарядки. Соединение обмотки треугольником обеспечивает баланс ампер-виток для тока нулевой последовательности и каждой фазы соединения звездой, это даёт оптимальный уровень полного сопротивления нулевой последовательности. Без соединения треугольником обмотки ток нулевой последовательности привёл бы к образованию поля токов нулевой последовательности в сердечнике. Если сердечник имеет три стержня, данное поле проникнет сквозь стенки бака и приведёт к выделению тепла. При наличии пяти стержней сердечника или в случае с броневым сердечником, данное поле проникнет между раскрученными боковыми стержнями и полное сопротивление нулевой последовательности повысится. Вследствие этого ток, в случае пробоя на землю может стать настолько слабым, что защитное реле не сработает.

Соединение обмотки треугольником позволяет циркулировать третьей гармонике тока внутри треугольника, образованного тремя последовательно соединёнными фазными обмотками. Третья гармоника тока во всех трёх фазах имеет одинаковое направление. Эти токи не могут циркулировать в обмотке, соединённой звездой, с изолированной нейтралью.

В случаях, если у сердечника 5 стержней, или он исполнен в броневом варианте недостаток троичных синусоидальных токов в намагничивающем токе может привести к значительным искажениям наведённого напряжения. Обмотка трансформатора соединённая треугольником устранит это нарушение, так как обмотка с данным соединением обеспечит затухание гармонических токов.

Так же в трансформаторах предусмотрено наличие третичной Δ-соединённой обмотки, которая применяется не для зарядки, а для предотвращения искажения напряжения и понижения полного сопротивления нулевой последовательности. Такие обмотки называются компенсационными. Распределительные трансформаторы, которые предназначены для зарядки, между фазой и нейтралью на стороне первого контура, снабжены соединённой треугольником обмоткой. Однако ток в таком соединении может быть очень слабым для достижения минимума номинальной мощности. В подобных случаях высоковольтная обмотка может быть соединена звездой, а вторичная обмотка — зигзагообразно. Токи нулевой последовательности, циркулирующие в двух отводах зигзагообразно соединённой обмотки будут балансировать друг друга, полное сопротивление нулевой последовательности вторичной стороны определяется полем рассеяния магнитного поля между двумя разветвлениями обмоток.

При использовании соединения пары обмоток различными способами, есть возможность достигнуть различных степеней напряжения смещения между сторонами трансформатора.

  • Большие буквы Y - звезда; D - треугольник - для первичной обмотки;
  • маленькие буквы y - звезда; d - треугольник; z - зигзаг - для вторичного напряжения;
  • буква N - означает вывод нейтрального зажима первичной обмотки на клеммную колодку;
  • буква n - означает вывод нейтрального зажима вторичной обмотки на клеммную колодку;