Защита силовых трансформаторов. Защита силовых трансформаторов, общие сведения

В любой электрической подстанции силовые трансформаторы являются наиболее ответственными элементами. Сам по себе трансформатор – это то статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты. В настоящее время имеют распространение комплектные трансформаторные подстанции (КТПН) и БКТП (в бетонной оболочке).

Трансформаторы преобразуют напряжение от генерирующей электроэнергию установки до конечного потребителя. Понижение осуществляется каскадно, через несколько этапов, что увеличивает количество силовых трансформаторов в десятки раз. Чтобы защитить трансформаторы от аварий при коротких замыканиях и перегрузках – выполняется релейная защита трансформаторов.

Параметры силовых трансформаторов

Для выбора типа защиты трансформаторов от короткого замыкания, необходимо определиться с его параметрами. Большая их часть и самая важная отражена в паспорте или на шильде самого силового или измерительного трансформатора. В соответствии с ГОСТ 11677-85 "Трансформаторы силовые" принята единая структурная схема условного обозначения трансформаторов:

  • О – однофазный;
  • Т – трехфазный;
  • М – масляный;
  • С – сухой;
  • З – защитное исполнение;
  • Г – герметичное;
  • Н – возможность регулирования под нагрузкой.

После буквенной части обозначения через тире указывается номинальная мощность силового трансформатора в киловольт-амперах (кВ-А), затем через дробь - класс напряжения стороны высшего напряжения (ВН) в киловольтах (кВ) и далее через тире - климатическое исполнение и категория размещения оборудования по ГОСТ 15150-69:

  • У - для умеренного климата;
  • ХЛ - холодного;
  • Т - тропического;
  • 1 - для работы на открытом воздухе;
  • 2 - для работы в помещениях, где температура и влажность такие же, как на открытом воздухе;
  • 3 - для закрытых помещений с естественной вентиляцией;
  • 4 - для работы в помещениях с искусственным регулированием климата;
  • 5 - для работы в помещениях с повышенной влажностью.

Номинальные мощности силовых трансформаторов должны соответствовать ГОСТ 9680-77. Трансформаторы масляные 10 кВ для питания электроприёмников выпускаются с номинальной мощностью до 2,5 MB-А, а для связи между электросетями разных напряжений - до 6,3 МВ-А: например, 25, 40, 63, 100, 160, 250, 400, 630 кВ-А, а также 1; 1,6 и 2,5 МВ-А. Трансформаторы сухие (ТСЗ) выпускаются с номинальной мощ-ностью 160, 250, 400, 630 кВ-А, а также 1 и 1,6 МВ-А.

Виды защит силовых трансформаторов

Трансформаторы 10/0,4 кВ в сельских и городских распределительных электрических сетях мощностью до 0,63 MB-А включительно, как правило, защищаются плавкими предохранителями на стороне 10 кВ и весьма часто также плавкими предохранителями на стороне 0,4 кВ. Автоматические воздушные выключатели предназначены для автоматического отключения электрических цепей до 1000 В при токах КЗ и перегрузках.

Релейная защита силовых трансформаторов мощностью 1000кBА и выше от ненормативных показателей напряжения, короткого замыкания и так далее, подразделяется на виды: продольная дифференциальная, токовая защита трансформатора без задержки времени, газовая, максимальная токовая защита со стороны питания, специальная токовая защита нулевой последовательности, специальная резервная максимальная токовая защита трансформатора, максимальная токовая защита в одной фазе, защита (сигнализация) от однофазных замыканий на землю в обмотке или на выводах трансформатора, а также на питающей линии 10 кВ.

Вид защиты зависит от угрозы. Так, продольная дифференциальная защита применяется для ликвидации последствий короткого замыкания на трансформаторах начиная с мощности 6,3 MBА, иногда устанавливается и на маломощных силовых трансформаторах в том случае, если понижение напряжения идет большими перепадами. Минимальное значение - 1 MBА. Токовая отсечка без выдержки времени также применяется как защита от короткого замыкания со стороны питания и является альтернативой продольной дифференциальной защиты силовых трансформаторов.

Защита от всех видов повреждений внутри кожуха трансформатора обеспечивается газовой защитой. В соответствии с ГОСТ 11677-85 газовое реле устанавливается на всех масляных трансформаторах с расширителем начиная с мощности 1 MBА, сухие силовые трансформаторы оборудуются системой манометрической защиты.

Максимальная токовая защита (МТЗ) силового трансформатора со стороны питания защищает от короткого замыкания на выводах и внутри трансформатора, при повреждениях шин щита НН и на отходящих линиях НН (низкое напряжение). Специальная токовая защита нулевой последовательности используется, если трансформатор низкого напряжения работает с глухозаземленной нейтралью. Специальная резервная максимальная токовая защита применяется при опасности межфазных коротких замыканий в силовых трансформаторах низкого напряжения в тех случаях, когда в зонах дальнего резервирования максимальной токовой защиты обнаружена недостаточная чувствительность к коротким замыканиям. И, наконец, максимальная токовая защита в одной фазе - от сверхтоков, обусловленных перегрузкой; устанавливается на трансформаторах начиная с мощности 0,4 MB-А, у которых возможно возникновение перегрузки после отключения параллельно работающего трансформатора или подключения дополнительной нагрузки в результате действия сетевого или местного устройства АВР.

Итак, для силовых трансформаторов больше 1 кВ релейная защита требуется для того, чтобы исключить выход из строя подстанции при следующих аварийных ситуациях:

  • 1. Появление сверхтоков в обмотках при перегрузке;
  • 2. Появление сверхтоков из-за внешних КЗ;
  • 3. Многофазные КЗ в обмотках и на их выводах;
  • 4. Однофазные замыкания на землю;
  • 5. Понижение уровня масла (вытекание масла из кожуха трансформатора);
  • 6. Внутренние повреждения трансформатора, в частности – витковых замыканий.

К числу внутренних повреждений силовых трансформаторов относится "пожар стали". Это повреждение магнитопровода, связанное с замыканием листов стали, повреждением изоляции стяжных болтов, вообще возникновение любых замкнутых контуров в теле силового трансформатора. Вихревые потоки в новообразованных замкнутых контурах приводят к повышению температуры трансформатора, выделению газа серого или буроватого цвета, который образуется в газовом реле и довольно горюч – при поджоге воспламеняется. Трансформаторное масло начинает проходить через процесс крекинга – разложения: становится густым и темным, приобретает специфический резкий запах.

Важно при выполнении работ по защите учитывать слабые места трансформатора, чтобы выбрать оптимальный вариант. Для оценки потенциала аварийности, используются следующие критерии анализа и оценки: броски тока намагничивания при включении трансформатора под напряжение, влияние коэффициента трансформации и схем соединения обмоток трансформатора.

Релейная защита трансформаторов

Релейная защита осуществляется с помощью вторичных реле прямого или косвенного действия. Вторичные реле подключены не напрямую, а через измерительные транс-форматоры тока и напряжения. РПД имеют две функции – электромагнита отключения выключателя и измерительного органа напряжения. РПД делятся на токовые реле прямого действия мгновенные и с выдержкой времени. Такие реле используются для трансформаторов на 6 и 10 кВ с выключателем высокого напряжения. Принцип их действия заключается в токовой отсечке и защите. Мощность силовых трансформаторов с РПД не должна превышать 1,6 MB-А, поскольку, в отличие от РКД (реле косвенного действия), реле прямого действия имеют меньшую чувствительность, и могут просто не успеть сработать.

Релейная защита с помощью реле косвенного действия строится на системе измерительных реле, которые непрерывно получают информацию от трансформаторов тока и напряжения (ТТ и ТН) на 10/0,4 кВ, 10/6 кВ, 10/10 кВ. Сложная функциональная схема удорожает производство, но многократно повышает эффективность работы. Принцип действия состоит в следующем: когда ток или напряжение на одном из реле силового трансформатора достигнет предела, установленного заранее, реле срабатывает и посылает сигнал на логическую часть системы. Предельное значение тока или напряжения называется "параметром срабатывания" или "установкой". Предустановки реле на силовых трансформаторах должны быть изменены в соответствии с потребностями энергоустановки.

В отличие от аналоговой части, логический орган релейной защиты силовых трансформаторов от короткого замыкания и иных нарушений функционала работает по принципу алгоритмизации получаемых сигналов. В нее задаются четыре операнда: сложения, умножения, отрицания и задержки. Например, при максимальной токовой или дифференциальной защите трансформатора параллельное соединение замыкающих контактов 2-3 реле аналогично логическому элементу "ИЛИ". При срабатывании одного из токовых реле пучка, включается защита трансформатора.

Умножение сигнала, или операнд "И", аналогичен последовательному соединению токовых реле. Он используется в схеме максимальной токовой защиты при скачках напряжения. Чтобы защита сработала, необходимо превышение установки не только силы тока, но и напряжения. Более сложный логический элемент – "НЕ" - предупреждает срабатывание элемента системы при отказе другого элемента. В частности, при повреждении кожуха трансформатора срабатывает газовая, либо дифференциальная релейная защита. При этом необходимо исключить возможность повторного автоматического включения силового трансформатора, т.н. автоматическое повторное включение (АПВ). Для этого в систему реле включаются, наряду с контрольными, размыкающие реле, которые при срабатывании схемы отрицания включаются и разрывают выходную цепь устройства, исключаемого из схемы работы. Задержка срабатывания системы осуществляется с помощью реле времени.

Логическая часть релейной защиты: принцип работы

Работа логической части релейной защиты силовых трансформаторов заключается в использовании поступившей информации для запуска серии последовательных логических комбинаций, позволяющих отключить поврежденный трансформатор со всех сторон; блокировать выходы на устройства, которые должны замереть; перекинуть рабочие цепи функционирующих устройств на другой путь. Система, как уже говорилось выше, имеет сигнальные органы, исполнительные органы, логическую часть и оперативный источник питания. Снабжение системы релейной защиты оперативным током обеспечивает срабатывание всех ее частей, а также электромагнитов управления коммутационных аппаратов.

С учетом того, что оперативный ток должен поступать и в аварийных ситуациях, его источниками на подстанции должны быть аккумуляторные батареи - как источники постоянного тока, так и измерительные трансформаторы тока и напряжения и ТСН (трансформатор собственных нужд) - как источники переменного тока. Выпрямленный ток поставляется через блоки питания, как токовые, так и напряжения. Могут быть использованы выпрямительные устройства аналогичного типа. Ток разряда конденсаторов для релейной защиты поступает от блоков конденсаторов.

Рекомендуется для питания релейной защиты силовых трансформаторов использовать источник постоянного тока – аккумуляторную батарею, как самый надежный элемент из перечисленных. Это источник автономный, но, к сожалению, имеющий ограниченную емкость, мало применимую для подстанций распределительных сетей в силу дороговизны и ненадежности. Хотя именно аккумуляторная батарея обеспечивает срабатывание реле даже при полном отключении питания.

Для питания релейной защиты через измерительные трансформаторы, необходимо использовать одновременно все три типа: ТН, ТТ и ТСН, что обусловливается спецификой нарушений – снижение напряжение на подстанции до нуля, например, при многократных коротких трехфазных замыканиях, требует использования тока от ТН. ТТ обеспечивает работу электромагнитов управления – такая схема называется "схемой с дешунтированием электромагнитов управления". С другой стороны, ТСН, например, может вполне справится с питанием защиты в случае виткового замыкания. При уходе масла из кожуха трансформатора достаточно будет включения ТН. Тем не менее, поскольку аварийные ситуации непредсказуемы, использовать измерительные трансформаторы в комплексе релейной защиты – необходимо.

Питание выпрямленным оперативным током, по сути, похоже на использование аккумуляторных батарей. Применяется оно для силовых трансформаторов меньше 10кВ. Конденсаторы включаются при полном отключении подстанции, когда необходимо обеспечить функционирование релейной защиты, автоматики, части электродвигателей, что облегчает запуск подстанции при повторном пуске электроэнергии. Самозапуск электродвигателей – основная задача применения блоков конденсаторов.

Дешунтирование электромагнитов от включения

Шунтирование электромагнитов производится специальным размыкающим реле, которое прерывает рабочий ток при превышении показаний установок силового трансформатора. Шунтирующий контакт обычно дублируется вторым, чтобы при повторном срабатывании цепи, ток не пробил защиту элемента, поскольку возможность излишнего срабатывания существует. Вторичный ток в таком случае проходит только через первое реле и не замыкает второе. Релейная защита силовых трансформаторов с дешунтированием электромагнитов строится на основе использования двух типов реле: индукционных реле косвенного действия и специальных промежуточных реле.

Индукционные реле в системе защиты трансформаторов предназначены для выстраивания простейшей двухступенчатой системы защиты Т10кВ. Принцип их работы – токовая отсечка мгновенного действия и максимальная токовая защита с обратнозависимой от тока выдержкой времени.

Специальные промежуточные реле силовых трансформаторов предназначены для дифференциальной защиты или максимальной токовой защиты трансформатора с независимой от тока выдержкой времени. Они оборудованы встроенным маломощным выпрямительным устройством.

Защита трансформаторов от сверхтоков в обмотках, обусловленных внешними короткими замыканиями

Максимальная токовая защита – вид релейной защиты, который используется чаще всего, поскольку позволяет исключить выход объекта из строя вследствие внешних коротких замыканий. МТЗ предполагает два варианта реализации: с пуском реле от минимального напряжение, или без пуска. Она применяется только на трансформаторах мощностью до 1000 кВА, что связано с низкой чувствительностью системы. Повышающие трансформаторы должны быть оборудованы для защиты от внешних КЗ системами другого плана: токовой защитой нулевой последовательности, либо все той же максимальной токовой защитой с пуском реле от минимального напряжения. Обычно они дополняются токовыми реле защиты генераторов. Однофазная максимальная токовая защита используется для нескольких параллельно работающих трансформаторах мощностью по 400 кВА. На необслуживаемых подстанциях защита может выполняться с действием на автоматическую разгрузку или отключение трансформатора.

В целом, многообразие релейной защиты силовых трансформаторов при обеспечении индивидуального питания в случае обесточивания подстанции, позволяет выбрать наиболее оптимальную по цене и эффективности схему: чем слабее трансформатор, тем менее чувствительная, а, значит, более дешевая система может быть поставлена. Для сельских электросетей от 0,38кВ достаточно автоматических выключателей типа АП-50, А3124, А3134, А3144, А3700 или блоков "предохранитель-выключатель" типа БПВ-31-34 с предохранителями типа ПР2. Более мощные трансформаторы требуют наличия дублирующих сетей и элементов для дешунтирования, а также наличия независимых источников тока – аккумуляторных батарей или конденсаторов. В случае, если требуется мгновенное отключение тока, используются дополнительные выносные релейные защиты с расцепителем нулевого напряжения.

Релейная защита эффективна и для силовых сетей с радиальной схемой подключения и одним источником питания: реле максимальной токовой защиты устанавливаются на каждой линии и обеспечивают бесперебойное функционирования остальных, вне зависимости друг от друга.

Трансформаторы и автотрансформаторы конструктивно весьма надежны благодаря отсутствию у них движущихся или вращающихся частей. Несмотря на это, в процессе эксплуатации возможны и практически имеют место их повреждения и нарушения нормальных режимов работы. Поэтому трансформаторы и автотрансформаторы должны оснащаться соответствующей релейной защитой.
В обмотках трансформаторов и автотрансформаторов могут возникать короткие замыкания между фазами, одной или двух фаз на землю, между витками одной фазы и замыкания между обмотками разных напряжений. На вводах трансформаторов и автотрансформаторов, ошиновке и в кабелях также могут возникать короткие замыкания между фазами и на землю.
Кроме указанных повреждений, в условиях эксплуатации могут происходить нарушения нормальных режимов работы трансформаторов и автотрансформаторов, к которым относятся: прохождение через трансформатор или автотрансформатор сверхтоков при повреждении других связанных с ними элементов, перегрузка, выделение из масла горючих газов, понижение уровня масла, повышение его температуры.
Из изложенного следует, что защита трансформаторов и автотрансформаторов должна выполнять следующие функции:
– отключать трансформатор (автотрансформатор) от всех источников питания при его повреждении;
– отключать трансформатор (автотрансформатор) от поврежденной части установки при прохождении через него сверхтока в случаях повреждения шин или другого оборудования, связанного с трансформатором (автотрансформатором), а также при повреждениях смежного оборудования и отказах его защиты или выключателей;
– подавать предупредительный сигнал дежурному персоналу подстанции (или электростанции) при перегрузке трансформатора (автотрансформатора), выделении газа из масла, понижении уровня масла, повышении его температуры.
В соответствии с назначением для защиты трансформаторов (автотрансформаторов) при их повреждениях и сигнализации о нарушении нормальных режимов работы применяются следующие типы защит:
– Дифференциальная защита для защиты при повреждениях обмоток, вводов и ошиновки трансформаторов (автотрансформаторов).
– Токовая отсечка мгновенного действия для защиты трансфер матора (автотрансформатора) при повреждениях его ошиновки, вводов и части обмотки со стороны источника питания.
– Газовая защита для защиты при повреждениях внутри бака трансформатора (автотрансформатора), сопровождающихся выделением газа, а также при понижениях уровня масла.
– Максимальная токовая или максимальная направленная защита или эти же защиты с пуском минимального напряжения для защиты от сверхтоков, проходящих через трансформатор (автотрансформатор), при повреждении как самого трансформатора (автотрансформатора), так и других элементов, связанных с ним. Защиты от сверхтоков действуют, как правило, с выдержкой времени.
– Защита от замыканий на корпус.
– Защита от перегрузки, действующая на сигнал, для оповещения дежурного персонала или с действием на отключение на подстанциях без постоянного дежурного персонала.
Кроме того, в отдельных случаях на трансформаторах (автотрансформаторах) могут устанавливаться и другие виды защиты.

9.1. Виды повреждений трансформаторов и типы используемых защит

9.1.1. Повреждения трансформаторов и защиты от них

Виды повреждений :

1. замыкания между фазами внутри бака трансформатора и на наружных выводах обмоток;

2. замыкания в обмотках между витками одной фазы (витковые замыкания );

3. замыкания на землю обмоток;

4. повреждение магнитопровода – пожар железа .

Наиболее часто встречающиеся повреждения – КЗ на выводах и витковые замыкания. Многофазные КЗ происходят реже. В трехфазных трансформаторах они маловероятны вследствие большой прочности междуфазной изоляции; в трансформаторных группах, составленных из трех однофазных трансформаторов, замыкания между фазами практически невозможны.

При витковых замыканиях токи, как правило, небольшие, поэтому защиты трансформаторов, предназначенные для действия при витковых замыканиях, а также при замыканиях на землю в обмотке, работающей на сеть с изолированной нейтралью, должны обладать высокой чувствительностью.

Для ограничения разрушений защита трансформаторов должна действовать быстро. Повреждения, сопровождаемые большим током должны отключаться без выдержки времени (время действия защиты составляет 0,05 – 0,1 с.).

Виды защит трансформаторов от повреждений :

1. Дифференциальная – мгновенная защита обмоток, вводов и ошиновок трансформатора.

2. Токовая отсечка – защита ошиновки, вводов и части обмотки со стороны высокого напряжения.

3. Газовая – защита от повреждений внутри бака, сопровождающихся выделением газа, а также при понижении уровня масла.

4. Защита от замыканий на корпус.

9.1.2. Ненормальные режимы трансформаторов и защита от них

К ненормальным режимам трансформаторов относят появление в их обмотках сверх токов при внешних КЗ, качаниях и перегрузках и повышение напряжения.

1. Внешние КЗ

При КЗ на шинах или отходящей от шин линии через трансформатор протекает ток КЗ, существенно превышающий ток нормального режима. При длительном протекании сверх тока обмотки трансформатора недопустимо нагреваются.

Для защиты трансформатора в этом случае используется максимальные токовые защиты (обычная, или с блокировкой минимального напряжения), направленная защита, токовая защита нулевой последовательности. В зону действия данных защит должны входить шины подстанции (1-ая зона защиты) и все присоединения, отходящие от этих шин (2-ая зона защиты). Эти защиты резервируют действие основных защит сборных шин и отходящих линий, а также являются резервными защитами при повреждении самого трансформатора.

2. Перегрузка

Перегрузку трансформатора порядка 1,5 – 2 от номинального значения можно допускать в течение десятков минут. Мощные трансформаторы имеют меньшее допустимое время перегрузки . Кратковременные перегрузки возникают при самозапуске двигателей напряжением 6-10 кВ, подключении мощной нагрузки и др., отключения трансформатора при этом не требуется. Более длительная перегрузка при подключении нагрузки от АВР, отключения параллельно работающего трансформатора, могут быть в течение десятков минут устранены персоналом или автоматикой.

Защита трансформатора от перегрузки должна действовать на отключение только в том случае, когда перегрузка не может быть устранена персоналом или автоматикой. В остальных случаях защита действует на сигнал .

Защита от перегрузки выполняется с помощью токовых реле.

3. Повышение напряжения

В сетях 500-750 кВ при одностороннем отключении длинных линий с большой емкостной проводимостью вероятно опасное для трансформаторов повышение напряжения. При повышении напряжения увеличивается магнитная индукция в магнитопроводе трансформатора. Возрастает ток намагничивания и вихревые токи, что может вызвать пожар железа сердечника.

9.2. Дифференциальная защита трансформаторов

9.2.1. Назначение и принцип действия дифференциальной защиты

Дифференциальная защита (ДЗ) предназначена для защиты от КЗ между фазами, на землю и от витковых замыканий. Принцип действия ДЗ такой же как у продольной дифференциальной защиты линий – основан на сравнении величин и направлении токов до и после защищаемого элемента. Распределение токов при КЗ в трансформаторе и вне его продемонстрировано на рис. 9.2.1.

Задачей при проектировании защиты является уравновешивание вторичных токов в плечах защиты так, чтобы ток в реле отсутствовал и ДЗ не работала при нагрузке и внешних КЗ (рис. 9.2.1. а)). При КЗ в трансформаторе (рис. 9.2.1. б)), если I P > I C . P . – реле сработает и отключит трансформатор.

9.2.2. Особенности дифференциальной защиты трансформаторов

Дифференциальная защита трансформаторов имеет ряд особенностей по сравнению с продольной дифференциальной защитой линий.

1. Первичные токи обмоток трансформатора не равны по величине и в общем случае не совпадают по фазе.

В режиме нагрузки и внешнего КЗ: I II >I I , отношение токов - равно коэффициенту трансформации силового трансформатора.

2. В трансформаторе с соединением обмоток Y / D - токи I I и I II различаются и по величине и по фазе: угол сдвига зависит от группы соединения обмоток трансформатора. Наиболее распространённое соединение обмоток Y / D –11 гр. Векторные диаграммы распределения токов в обмотках трансформатора с такой группой соединения показаны на рис. 9.2.2.

В связи с вышеизложенным необходимы специальные меры по выравниванию вторичных токов по величине: , а при разных схемах соединения обмоток и по фазе, с тем, чтобы поступающие в реле токи в нормальном режиме и при внешнем КЗ были равны.

Пояснение к рис.:

I AI , I BI , I CI – токи в фазах обмотки, соединенной в звезду;

I A , I B , I C - токи в фазах обмотки, соединенной в треугольник.

Фазные токи сдвига не имеют. Однако, в месте установки трансформатора ТА2 проходят токи, равные геометрической разности фазных токов, так в фазе А проходит ток: I AII = I A I B . Ток I AII сдвинут относительно I AI на угол 330° .

9.2.3. Меры по выравниванию вторичных токов

9.2.3.1. Компенсация сдвига токов I 1 и I 2 по фазе

Выравнивание вторичных токов в плечах защиты по фазе осуществляется соединением в треугольник вторичных обмоток трансформаторов тока, установленных на стороне звезды силового трансформатора (см. рис. 9.2.3.).

Такой способ обеспечивает компенсацию сдвига фаз не только при симметричной нагрузке и трехфазных КЗ, но и при любом несимметричном повреждении.



9.2.3.2. Выравнивание величин токов I 1 и I 2

Выравнивание величин вторичных токов в плечах дифференциальной защиты осуществляется подбором коэффициентов трансформации n T 1 и n T 2 трансформаторов тока и параметрами, специально для этой цели установленных, промежуточных автотрансформаторов или трансформаторов (см. рис. 9.2.4.).

Коэффициенты трансформации n T 1 и n T 2 выбираются таким образом, чтобы вторичные токи в плечах защиты, по возможности, совпадали I 1 = I 2 (рис. 9.2.4. а)).

При соединении обмоток силового трансформатора Y / Y :

(9.1.)

где:N – коэффициент трансформации силового трансформатора.

При соединении обмоток по схеме Y / D :

Ток в плече, подсоединенном к трансформаторам тока включенным в треугольник , а в плече присоединенномк трансформаторам тока, соединенным в звезду , с учетом этого:

(9.2.)

Задаваясь одним из коэффициентов трансформации, например n TII можно найти, пользуясь выражениями (9.1.) или (9.2.), расчетное значение второго n TI , но он, как правило, получается нестандартным. Используют трансформатор тока с стандартным значением коэффициента трансформации, ближайшим к расчетному значению, а компенсация оставшегося неравенства вторичных токов осуществляется с помощью выравнивающих автотрансформаторов или трансформаторов

Использование автотрансформатора (см. рис. 9.2.4. б)):

Коэффициент трансформации автотрансформатора n a подбирается так, чтобы его вторичный ток I 2 a был равен току I 1 в противоположном плече защиты:

(9.3.)

Использование трансформатора (см. рис. 9.2.5.):

В данном случае используется промежуточный компенсирующий трансформатор с тремя первичными обмотками: w y 1 и w y 2 - уравнительные , включаются в плечи защиты; w - дифференциальная , включаемая на разность токов I 1 I 2 . Вторичная обмотка w 2 питает дифференциальное реле КА .

Число витков обмоток подбирается из условия:

9.2.4. Токи небаланса в дифференциальной защите

9.2.4.1. Общие сведенья

При внешних КЗ и нагрузке обеспечить полный баланс вторичных токов, поступающих в реле не удается:

I нб = I 1 I 2 (9.5.)

В общем случае ток небаланса можно разложить на ряд составляющих:

I нб = I нб.ТА + I нб.рег + I нб.ком + I нб.нам (9.6.)

где:I нб.ТА – ток небаланса из-за погрешностей трансформаторов тока;

I нб.рег – погрешность при изменении коэффициента трансформации N силового трансформатора;

I нб.ком – ток небаланса из-за неточности компенсации токов в плечах защиты;

I нб.нам – составляющая, вызванная наличием тока намагничивания I нам у силового трансформатора.

Составляющая I нб.ТА имеет наибольшую величину и является основной:

I нб.ТА = I II нам I I нам (9.7.)

где:I I нам , I II нам - токи намагничивания трансформаторов тока.

I нб.рег - Компенсация неравенства первичных токов, осуществляемая с помощью компенсирующего трансформатора или вспомогательного автотрансформатора, обеспечивается при определенном значении коэффициента трансформации силового трансформатора N . Этот коэффициент может изменяться, особенно значительно у силовых трансформаторов оснащенных РПН. Обычно параметры компенсирующих устройств подбираются для среднего значения N . При отклонении от него на ± D N появляется ток небаланса:

(9.8.)

где:I скв - сквозной ток, протекающий через трансформатор.

I нб.ком - Появляется в тех случаях, когда регулирующие возможности компенсирующих устройств не позволяют подобрать расчетные значения w y или n a , необходимые для полной компенсации.

I нб.нам - Ток намагничивания I нам силового трансформатора нарушает расчетное соотношение между первичным и вторичным токами силового трансформатора:

I нб.нам = I нам (9.9.)

В нормальном режиме I нам составляет 1–5% от I ном . Ток намагничивания резко возрастает при увеличении напряжения на трансформаторе, при КЗ ток намагничивания резко уменьшается.

9.2.4.2. Причины повышенного тока небаланса в дифференциальной защите трансформаторов и автотрансформаторов

Величина тока небаланса достигает значительной величины у трансформаторов с РПН, из-за составляющей - I нб.рег .

Из-за конструктивных ограничений часто бывает значительна составляющая I нб.ком .

Особенна велика составляющая I нб.ТА – причины этого:

1. Конструктивная разнотипность трансформаторов тока, применяемых на стороне высшего и низшего напряжения силовых трансформаторов. Особенно резко отличаются характеристики трансформаторов тока, встраиваемых в вводы масляных выключателей (U НОМ = 35 кВ и выше), от характеристик выносных трансформаторов тока, применяемых на напряжении 10 и 6 кВ.

2. Большое сопротивление нагрузки, присоединенной ко вторичным обмоткам трансформаторов тока и значительным различием сопротивлений плеч.

3. У трех обмоточных трансформаторов, кратность токов при внешних КЗ для различных групп трансформаторов тока получаются неодинаковыми. Через одну группу протекает суммарный ток КЗ, через две другие лишь часть этого тока. В результате группа ТА3 (см. рис. 9.2.6.) будет намагничиваться сильнее, токи намагничивания этих трансформаторов увеличатся.

9.2.4.3. Расчет тока небаланса

Ток небаланса оценивается по приближенной формуле, исходя из предположения, что при максимальном токе короткого замыкания, погрешность трансформаторов тока не превышает 10%:

I нб.ТА = k одн 0,1 I к.макс (9.10.)

где:k одн - коэффициент однотипности, учитывающий различие в погрешности трансформаторов тока, образующих дифференциальную схему; k одн = 0,5–1. При существенном различии условий работы и конструкций трансформаторов тока - k одн = 1.

Значение полного тока небаланса:

9.2.4.4. Меры для предупреждения действия защиты от токов небаланса

Простейшее решение: I C.P. > I нб – значительно ограничивает чувствительность защиты. Ток небаланса стараются уменьшить. Так как основной составляющей является I нб.ТА , главный путь уменьшения тока небаланса – правильный подбор трансформаторов тока и их вторичной нагрузки. Трансформаторы тока не должны насыщаться при максимальном значении тока сквозного КЗ.

Однако, даже после принятых мер, ток небаланса все равно остается достаточно большим. Для исключения ложного действия защиты от токов небаланса применяют:

1. дифференциальные реле, включенные через быстро насыщающиеся вспомогательные трансформаторы (БНТ);

2. дифференциальныереле с торможением.

9.2.4.5. Токи намагничивания силовых трансформаторов и автотрансформаторов при включении их под напряжение

При включении силовых трансформаторов возникает резкий бросок тока намагничивания, имеющий затухающий характер (рис. 9.2.7.).

Изменение тока I нам во времени характеризуется следующими особенностями:

1. Кривая тока носит асимметричный характер, пока ток I нам не достигнет установившегося значения;

2. кривая может быть разложена на апериодическую составляющую и синусоидальные токи различных гармоник. Апериодическая составляющая имеет весьма большое удельное значение в токе I нам ;

3. Время затухания токов определяется постоянными времени трансформатора и сети, и может достигать 2-3 секунд. Чем мощнее трансформатор, тем дольше продолжается затухание;

4. Первоначальный бросок тока может достигать 5-10 кратного значения номинального тока трансформатора. У мощных трансформаторов кратность меньше, чем у маломощных.

Ток I нам , появляется только в одной обмотке силового трансформатора (той, на которую подается напряжение при его включении (рис. 9.2.8.)). Для предотвращения ложных действий дифференциальной защиты, под влиянием I нам принимают специальные меры :

1. Замедление защиты примерно на 1 секунду (широко применялся ранее). При этом теряется наиболее ценное свойство защиты – её быстродействие;

2. Блокировка при понижении напряжения;

3. Торможение от токов высших гармоник; (опыт эксплуатации отверг эти два способа, они были недостаточно надежны, приводили к чрезмерному усложнению защиты).

В настоящее время применяются следующие два способа:

1. Использование БНТ (быстро насыщающегося трансформатора), через который включаются дифференциальные реле. БНТ не пропускает апериодический ток, который составляет значительную часть тока намагничивания;

2. Отстройка от тока намагничивания по величине I нам С.З. На этом принципе работают дифференциальные отсечки .

Преимущество обоих способов:

1. простота;

2. надежность;

3. быстрота действия.

9.2.5. Схемы дифференциальных защит

9.2.5.1. Дифференциальная токовая отсечка

Схемы токовых цепей дифференциальной токовой отсечки (ДТО) могут выполняться в 2-х вариантах: по полной 3-х фазной схеме с тремя реле, и упрощенной схеме в 2-х фазном исполнении на стороне треугольника силового трансформатора с двумя реле (рис. 9.2.9.).

На трансформаторах большой и средней мощности следует применять 3-х фазную схему, как более совершенную.

Основным условием правильной работы ДТО является отстройка тока срабатывания от намагничивающего тока, возникающего при включении силового трансформатора. Для облегчения отстройки устанавливаются промежуточные реле с временем действия 0,04-0,06 с. (К этому моменту ток намагничивания спадает практически в два раза. (см. рис. 9.2.7.)):

Из-за большой величины тока срабатывания, защита недостаточна чувствительна к витковым замыканиям.

(9.13.)

Достоинства ДТО :

1. Простота принципа действия;

2. Быстрота действия.

Недостатки ДТО :

Ограниченная чувствительность.

ДТО применяется на силовых трансформаторах малой мощности.

9.2.5.2. Дифференциальная защита с токовыми реле, включенными через БНТ

9.2.5.2.1. Общие сведенья

Схема дифференциальной защиты с реле тока РНТ-565 показана на рис. 9.2.10.

Применение БНТ позволяет выполнить простую и быстродействующую защиту, надежно отстроенную от токов небаланса и бросков намагничивания.

БНТ плохо трансформирует апериодические токи. В реле защиты попадает лишь переменная составляющая тока небаланса и броска намагничивающего тока силового трансформатора. (см. рис. 9.2.11. – осциллограммы токов в обмотках БНТ.) Временные зависимости наглядно показывают резкое снижение тока в реле и эффективность насыщающегося трансформатора.

За счет насыщения сердечника БНТ, обусловленного подмагничивающим действием апериодического тока, трансформация переменной составляющей также ухудшается, что ещё больше уменьшает ток в реле.

После затухания апериодической составляющей нормальные условия для трансформации периодического тока восстанавливаются.

Подмагничивающие действие апериодического тока, приводит к замедлению защиты при повреждении в её зоне. Трансформация уменьшается настолько, что ток в обмотке реле меньше тока срабатывания. Время замедления – 0,03 –0,01 секунды. Это является недостатком схемы дифференциальной защиты с БНТ.

Пояснения к рис.:

а) – при включении силового трансформатора под напряжение; б) – при сквозном КЗ. (I нам - ток намагничивания в первичной обмотке; I P - ток намагничивания во вторичной обмотке; I K - ток сквозного КЗ на плече дифференциальной защиты; I нб - ток небаланса в первичной обмотке; - ток небаланса во вторичной обмотке БНТ).

Ток срабатывания защиты должен отстраиваться от переменной составляющей переходных токов намагничивания и небаланса:

Реле РНТ-565 совмещает в себе устройство выравнивания вторичных токов защиты и БНТ. На рис. 9.2.10. : w y1 , w y2 – уравнительные обмотки, позволяют выровнять магнитный поток при неравенстве токов I 1 и I 2 при сквозных КЗ. w - рабочая (дифференциальная) обмотка. В РНТ-565 используется токовое реле типа РТ-40.

Число витков уравнивающих обмоток регулируется отпайками и подбирается так, чтобы при внешних КЗ ток в обмотке реле КА был равен нулю. (См. формулу 9.4.)

Ток срабатывания защиты регулируется изменением числа витков обмотки w .

На магнитопроводе реле РНТ имеется короткозамкнутая обмотка w к . Она повышает степень отстройки реле от токов небаланса и бросков намагничивающих токов силового трансформатораособенно, когда эти токи имеют незначительную апериодическую составляющую, что понижает эффективность действия БНТ. Короткозамкнутая обмотка ограничивает периодический ток, возникающий во вторичной обмотке РНТ. Конструктивно размещение обмоток реле РНТ-565 показано на рис. 9.2.12.

Работа БНТ:

Ток I , поступающий в обмотку w создает магнитодвижущую силу F = I w , которая образует в среднем стержне магнитный поток Ф , замыкающийся по крайним стержням магнитопровода.

В общем случае ток I состоит из переменной I .п. и апериодической I .а. составляющих. Соответственно этому образуются два магнитных потока Ф .п. и Ф .а. .

Переменный поток Ф .п. , замыкаясь по стержню 2 , наводит в обмотке w 2 , ЭДС Е 2 . Апериодический поток Ф .а. ., медленно изменяющийся во времени, не создает ЭДС в w 2 и полностью затрачивается на намагничивание магнитопровода.

Переменная составляющая потока Ф .п. ,наводит в витках короткозамкнутой обмотки w к ЭДС Е к и ток I к . Короткозамкнутая обмотка создает потоки Ф к и Ф направленные встречно потоку Ф .п. и заметно компенсируют его. В результате по магнитопроводу протекает остаточный поток Ф п < Ф .п. (где Ф .п. – магнитный поток при отсутствии короткозамкнутой обмотки).

Таким образом короткозамкнутая обмотка уменьшает переменный магнитный поток, создаваемый периодическим током I .п. , питающим обмотку w .

Рис. 9.2.12.

9.2.5.2.2. Варианты схем включения обмоток реле РНТ

Варианты схем включения обмоток реле РНТ-565 показаны на рис. 9.2.13. :

а)У 2-х обмоточных трансформаторов для компенсации неравенства токов в плечах защиты достаточно использовать только одну уравнительную обмотку (включается в плечо с меньшим током.

б)Для повышения точности компенсации применяются схемы с включением двух уравнительных обмоток.

в)Схема с использованием только уравнительных обмоток.

г)Защита 3-х обмоточных трансформаторов. Уравнительные обмотки включаются в плечи с меньшими токами. Плечо с большим током подсоединяется непосредственно к дифференциальной обмотке реле.

9.2.5.2.3. Расчет уставок дифференциальной защиты на реле РНТ-565

Самостоятельная работа студентов. (Расчет подробно изложен в методических указаниях к курсовой работе, а для 3-х обмоточного трансформатора в пособии по релейной защите к дипломному проектированию.

9.2.5.3. Дифференциальная защита с реле имеющим торможение

9.2.5.3.1. Общие сведенья

Чувствительность дифференциальной защиты силовых трансформаторов может быть повышена применением дифференциального реле с торможением. (Принципиальная схема токовых цепей дифференциальной защиты с реле ДЗТ-11 для двухобмоточного трансформатора представлена на рис. 9.2.14.)

Ток срабатывания защиты под влиянием тока, протекающего в тормозной обмотке реле, возрастает, что повышает надежность отстройки защиты от появляющихся токов небаланса.

9.2.5.3.2. Характеристика реле с торможением

При КЗ в зоне (рис. 9.2.15.) ток повреждения I K , протекающий по тормозной обмотке, загрубляет реле, но несмотря на это чувствительность тормозного реле выше, чем у реле с БНТ без торможения.

Для обеспечения достаточной надежности действия защиты при повреждениях в зоне и селективности при внешних КЗ коэффициент торможения (наклон характеристики реле) принимается равным 30-60%, а начальный ток I C.P.0 при I T =0 – 1,5-2 А (30-40% от I номТА ).



9.2.6. Оценка дифференциальных защит трансформаторов

Достоинства :

Быстрое и селективное отключение повреждений как самого трансформатора, так и его выводов и ТВЧ.

Применение :

Согласно ПУЭ, дифференциальные защиты устанавливаются:

на одиночно работающих трансформаторах мощностью 6300 кВА и выше;

на параллельно работающих трансформаторах мощностью 4000 кВА и выше, если токовая отсечка не обеспечивает необходимой чувствительности при КЗ на выводах низкого напряжения (k Ч <2) , а МТЗ имеет выдержку времени > 1.

На маломощных трансформаторах используются дифференциальные отсечки.

Если на трансформаторах с РПН и трех обмоточных трансформаторах реле с БНТ не удовлетворяет требованию чувствительности применяют тормозное реле типа ДЗТ.

9.3. Токовая отсечка трансформаторов

Токовая отсечка самая простая быстродействующая защита от повреждений в силовых трансформаторах. Данная защита реагирует только на большие по величине токи и охватывает своей зоной действия лишь часть трансформатора.

На трансформаторах, питающихся от сети с глухозаземленной нейтралью, отсечка устанавливается на трех фазах. Принципиальная схема токовой отсечки показана на рис. 9.3.1.

Ток срабатывания

Ток срабатывания токовой отсечки отстраивается от максимального тока КЗ при повреждении за трансформатором:

I С.З. = k Н I КЗ.макс (9.15.)

где:k Н - коэффициент надежности, =1,25-1,5 – в зависимости от точности токовых реле.

1,25-1,3 – для реле РТ-40;

1,4-1,5 – для реле РТ-80,90.

Рис. 9.3.2.

9.4. Газовая защита

9.4.1. Принцип действия и устройство газового реле

Образование газов в кожухе трансформатора и движение масла в сторону расширителя могут служить признаком повреждения внутри трансформатора (см. рис. 9.4.1.).

Существует три разновидности газовых реле, к устаревшим конструкциям относят поплавковые и лопастные ; современные газовые реле – чашечного типа.

Конструкция чашечного газового реле представлена на рис. 9.4.2.

Реле имеет два элемента – сигнальный и отключающий (чашки 1 и 2). Чашка может вращаться вокруг оси 3. 4-5 – подвижный контакт; 6-7 – неподвижный контакт; 8-9 – противодействующие пружины; 12 – лопасть на нижней чашке, вращающаяся на оси.

Если в кожухе реле и в чашках нет масла, то контакты разомкнуты. Та же, если кожух реле заполнен маслом. При понижении уровня масла в реле, под весом масла в чашке контакт замыкается. При бурном газообразовании, под действием потока масла лопасть 12 поворачивается и замыкает контакты.

При небольших повреждениях в трансформаторе образование газа происходит медленно, он поднимается к расширителю, проходя через реле, газ заполняет верхнюю часть её кожуха, вытесняя оттуда масло – замкнется контакт 4-6.

При значительном повреждении в трансформаторе, газообразование протекает бурно, под влиянием давления, масло приходит в движение, лопасть 12 замыкает контакты 5-7.

Реле способно различать степень повреждения в трансформаторе. при малых – сигнал, при больших – отключение.

Газовая защита реагирует и на понижение уровня масла – вначале на сигнал, затем на отключение.

Схема включения газового реле представлена на рис. 9.4.3. Для предупреждения неправильного отключения трансформатора, отключающая цепь газовой защиты после доливки масла или включения нового трансформатора переводится на сигнал (до 2-3 суток) до тех пор, пока не прекратится выделение воздуха, отмечаемые по работе защиты на сигнал.

9.4.2. Оценка газовой защиты

Достоинства :

1. Простота;

2. Высокая чувствительность;

3. Малое время действия при значительных повреждениях.

Газовая защита является наиболее чувствительной защитой трансформаторов от повреждений его обмоток и особенно витковых замыканий, на которые дифференциальная защита реагирует только при замыкании большого числа витков, а МТЗ и отсечка не реагируют совсем.

Недостатки :

1. Не действует при повреждениях на выводах трансформатора;

2. Должна выводиться из работы после доливки масла.

Применение

Обязательно устанавливается на трансформаторах мощностью 6300 кВА и выше, а также на трансформаторах 1000-4000 кВА не имеющих дифференциальной защиты или отсечки и если МТЗ имеет выдержку времени более 1 секунды. При наличие быстродействующих защит, её применение допускается. На внутрицеховых трансформаторах мощностью 630 кВА и выше обязательна к применению, независимо от наличия других быстродействующих защит.

9.5. Защита от сверхтоков

9.5.1. Назначение защиты от сверхтоков

Защита от сверхтоков служит для отключения трансформаторов при КЗ на сборных шинах или на отходящих от неё присоединениях, если защиты или выключатели этих элементов отказали (см. рис. 9.5.1.). Одновременно защита от сверхтоков используется и для отключения при повреждении в самом трансформаторе. Однако, имея выдержку времени (по условиям селективности) она может использоваться лишь в качестве резервной.

Наиболее простой защитой от внешних КЗ является МТЗ. В тех случаях, когда чувствительность её недостаточна, применяют МТЗ с блокировкой по напряжению.

Понизительные трансформаторы защищаются МТЗ. Кратность тока КЗ обычно значительна и достаточна для действия МТЗ.

Повышающие трансформаторы, устанавливаемые на электрических станциях находятся в худших условиях. МТЗ может иметь недостаточную чувствительность. Кратность тока КЗ невелика. Здесь применяются защиты реагирующие на ток обратной и нулевой последовательности. Также используются МТЗ с пуском по напряжению.

9.5.2. Максимальная токовая защита трансформаторов

9.5.2.1. Защита 2-х обмоточных понизительных трансформаторов

Принципиальная схема МТЗ двухобмоточных понизительных трансформаторов представлена на рис. 9.5.2. По соображениям надежности целесообразно воздействовать на оба выключателя Q1 иQ2, с тем, чтобы при внешних КЗ один выключатель резервировался вторым.

В сети с глухозаземленной нейтралью защита выполняется по 3-х фазной схеме, а в сети с изолированной нейтралью – по 2-х фазной с 1,2 или 3-мя реле, в зависимости от нужной чувствительности. Причем схема с одним реле, включенным на разность токов 2-х фаз на трансформаторах с соединением обмоток звезда/треугольник – не применяется .


Выбор уставок

Ток срабатывания защиты должен быть больше тока перегрузки, не требующей быстрого отключения трансформатора.

(9.16.)

где:I раб.макс – рабочий максимальный ток в режиме длительно возможной перегрузки.

Коэффициент чувствительности:

(9.17.)

где:I кз.мин – минимальный ток сквозного КЗ при повреждении в конце зоны действия МТЗ, установленной на трансформаторе.

Выдержка времени:

t TP = t W + D t (9 .18.)

где:t W – наибольшая выдержка времени защиты присоединения (линий, отходящих от шин низкого напряжения трансформатора);

D t – ступень селективности.

9.5.2.2. Защита трансформаторов с расщепленной обмоткой нижнего напряжения, или работающих на две секции шин

Принципиальная схема защиты представлена на рис. 9.5.3.

9.5.2.3. Защита трехобмоточных трансформаторов

9.5.2.3.1. Защита трехобмоточных трансформаторов при отсутствии питания со стороны обмотки среднего напряжения

Принципиальная схема защиты представлена на рис. 9.5.4.

При внешних КЗ защита должна обеспечивать отключение только той обмотки трансформатора, которая непосредственно питает место повреждения. Комплект со стороны низкого напряжения действует на отключение выключателя этой обмотки. Другой комплект со стороны высокого напряжения действует с двумя выдержками времени, с меньшей на отключение обмотки среднего напряжения и с большей на отключение всех выключателей трансформатора.

9.5.2.3.2. Защита трехобмоточных трансформаторов, имеющих 2-х и 3-х стороннее питание

МТЗ на трехобмоточных трансформаторах, имеющих 2-х или 3-х стороннее питание для обеспечения селективности должна быть направленной (см. рис. 9.5.5.).

При КЗ в точке К2 выдержка времени защиты 2 должна быть меньше защиты 1 . При КЗ в точке К1 , наоборот, защита 1 должна срабатывать раньше, т.е. простая МТЗ не может обеспечить селективности. Защиту 2 необходимо выполнить направленной, с выдержкой времени t’ 2 , так, чтобы она действовала при КЗ на шинах II . При КЗ на шинах I и III , защита II должна работать, несмотря на запрет реле направления мощности (как МТЗ, но с выдержкой t’’ 2 >t 1 и t 3 .

Принципиальная схема защиты комплекта 2 представлена на рис 9.5.6.

Реле KV1 замыкает свой контакт KV1.1 и промежуточное реле KL срабатывает. При трехфазном КЗ реле KV1 замыкает свой контакт KV1.1 .

9 .6. Защита трансформаторов от перегрузки

9.6.1. Подстанция с персоналом

Защита действует на сигнал. Токовое реле включено на ток одной фазы.

(9.19.)

где:k H – составляет – 1,05

Время срабатывания защиты отстраивается от выдержек времени максимальных защит присоединений, чтобы избежать излишних сигналов при КЗ и кратковременных перегрузках.

t ПЕР = t МТЗ + D t (9.20.)

9.6.2. Подстанция без персонала

Защита от перегрузки выполняется трехступенчатой.

Первая ступень срабатывает при малых перегрузках. Действие защиты на сигнал, передаваемый с помощью телемеханики на дежурный пункт.

t 1 = t МТЗ + D t (9.21.)

Вторая ступень от больших перегрузок. Действует на отключение части малоответственных потребителей, разгружая трансформатор до допустимого значения.

t 2 < t доп (9.22.)

где:t доп – допустимое время перегрузки.

Третья ступень действующая на отключение, если вторая ступень не осуществит разгрузки.

При неравной мощности обмоток или 2-х и 3-х стороннем питании защиту от перегрузки ставят на всех обмотках.

9.6.4. Защита от перегрузки автотрансформаторов

Защита от перегрузки устанавливается со стороны низкого и высокого напряжений, а также со стороны нейтрали для контроля за перегрузкой общей части обмотки. Кроме того, на повышающих автотрансформаторах с трехсторонним питанием устанавливается защита со стороны среднего напряжения в режиме, когда в обмотке низкого напряжения нет тока (в таком режиме пропускная мощность автотрансформатора снижается).

    Вид работы:

  • Формат файла:

    Размер файла:

Защита трансформаторов. Токовые защиты трансформаторов. Газовая защита трансформаторов

Вы можете узнать стоимость помощи в написании студенческой работы.

Помощь в написании работы, которую точно примут!

Лекция № 9

Защита трансформаторов. Токовые защиты трансформаторов. Газовая защита трансформаторов

9.1 Виды повреждений и ненормальных режимов работы трансформаторов, виды защит от них

Силовые трансформаторы являются основным видом оборудования подстанций, от исправности которых зависит надёжность электроснабжения потребителей и поэтому должны иметь набор защит, исключающих (уменьшающих) развитие аварий при возникновении аварийных ситуаций.

Основными видами повреждений в трансформаторах и автотрансформаторах являются:

короткие замыкания (КЗ) между фазами,

замыкания одной или двух фаз на землю,

витковые замыкания и замыкания между обмотками разных напряжений,

повреждение магнитопровода, приводящие к нагреву.

На вводах трансформаторов, ошиновке и в кабелях также могут возникать КЗ между фазами и на землю.

К нарушениям нормальных режимов работы трансформаторов относятся:

прохождения через трансформатор сверхтоков при повреждении других связанных с ними элементов,

перегрузка,

выделение газов из масла,

понижение уровня масла и повышение его температуры.

В соответствии с этим и в зависимости от мощности трансформатора, условий их работы, категории потребителя и т.д. применяются следующие типы защиты:

дифференциальная - для защиты при повреждениях обмоток, вводов и ошиновки трансформаторов (будут рассмотрены в следующей лекции);

токовая отсечка мгновенного действия или плавкий предохранитель - для защиты трансформатора при повреждениях ошиновки, вводов и части обмоток со стороны источника питания;

газовая - для защиты при повреждениях внутри бака маслонаполненного трансформатора, сопровождающихся выделением газа, а также при понижении уровня масла от сверхтоков, проходящих через трансформатор при повреждении как самого трансформатора, так и других связанных с ним элементов максимальная токовая или максимальная токовая направленная защита, реагирующая на фазные токи, а также на токи нулевой и обратной последовательностей;

максимальная токовая защита с пуском минимального напряжения, дистанционная защита;

защита от перегрузок и др.

Согласно «Правилам устройства системы электроснабжения железных дорог Российской Федерации (п.7.11,7.12.)» для силового понижающего трансформатора тяговой подстанции предусматриваются следующие виды защит:

дифференциальная токовая;

максимальная токовая защита (МТЗ) со стороны питающего напряжения;

от перегрузки;

от перегрева масла.

Защита трансформаторов плавкими предохранителями

В сетях напряжением 6-10кВ и даже 35кВ в качестве основной защиты трансформаторов мощностью до 1000кВА широко используется плавкие предохранители. Обычно они устанавливаются вместе с выключателем нагрузки. Резервирует действия плавкого предохранителя газовая защита.

Для предотвращения срабатывания предохранителя в нормальном режиме и при бросках тока намагничивания трансформатора плавкую вставку предохранителя выбирают с номинальным током

IВС.НОМ≈(1,5…2)IТР.НОМ

где IТР.НОМ - номинальный ток трансформатора.

Токовая отсечка

Если плавкий предохранитель по своей отключающей способности и другим причинам не проходит в качестве защиты от КЗ и больших перегрузок, то на одиночно работающих трансформаторах мощностью до 6300 кВА и параллельно работающих трансформаторах мощностью менее 4000 кВА для этих целей используется токовая отсечка. Однако она не является полноценной, так как, реагируя только на большие токи повреждения, охватывает своей зоной действия лишь часть трансформатора. Резервирует отсечку максимальная токовая и газовая защиты. Отсечка устанавливается с питающей стороны трансформатора и выполняется с использованием реле прямого действия РТМ, реле РТ-40 или электромагнитного элемента реле РТ-80.

Уставка отсечки

СЗ =КОТС*IК.МАКС(3)

где КОТС - коэффициент отстройки,

КОТС=1,3…1,4 (РТ-40); КОТС=1,5…1,6 (РТ-80);

КОТС=1,8…2 (РТМ);К.МАКС(3) - максимальный ток КЗ при повреждении на выводах трансформатора со стороны нагрузки. Кроме того, отсечка отстраивается от броска тока намагничивания IНАМ при включении трансформатора:СЗ>IНАМ; согласно опыту эксплуатации принимается

СЗ =(3…5)ÌIТР.НОМ

Чувствительность отсечки оценивается отношением:

где IК.МИН(2) - ток двухфазного КЗ у места установки защиты в режиме минимального питания. Отсечка в сочетании с максимальной токовой и газовой защитами обеспечивает хорошую защиту трансформаторов указанных выше мощностей.

Защита трансформаторов от сверхтоков является резервной, предназначенной для отключения их от источников питания как при повреждениях трансформаторов и отказе основных защит, так и при повреждениях смежного оборудования и отказе его защиты или выключателей. При отсутствии специальной защиты шин защита трансформаторов от сверхтоков осуществляет также защиту этих шин.

Резервные защиты от междуфазных повреждений имеют несколько вариантов исполнения:

) МТЗ без пуска по напряжению;

) МТЗ с комбинированным пуском по напряжению;

) МТЗ обратной последовательности с приставкой для действия при симметричных КЗ.

Резервные защиты от замыкания на землю выполняются в виде токовой защиты нулевой последовательности.

В данной лекции рассмотрим все виды защит, кроме дифференциальной.

К выполнению перечисленных видов защит предъявляются следующие требования:

газовая: двухступенчатая (первая действует на сигнал, а вторая на отключение);

МТЗ на стороне ВН: должна отключать силовой трансформатор со стороны ВН. СН, НН с необходимой чувствительностью;

защита от перегрузки: должна отстраиваться от номинального тока нагрузки (с учётом коэффициента надёжности, коэффициента возврата реле) с выдержкой времени 9с.;

защита от перегрева масла: должна работать на включение обдува вентилятора при превышении 70% номинального тока нагрузки (с учётом коэффициента надёжности и коэффициента возврата реле) с выдержкой времени 9с.

С учётом этих требований строятся различные виды защит:

защита от повреждений: осуществляется такими видами защит, как токовая отсечка, дифференциальная и газовая защита;

защита от внешних КЗ осуществляется при помощи МТЗ (в т.ч. с блокировкой по минимальному напряжению), ДЗ, токовых защит нулевой и обратной последовательностей;

защита от перегрузок, не являющихся такими опасными, как, например, токи КЗ, действует или сигнал (при наличии дежурного персонала) или (при отсутствии дежурного персонала) защита должна действовать на включение вентилятора обдува, разгрузку или отключение при помощи релейной защиты.

2 Примеры токовых защит трансформаторов

2.1Токовая отсечка (ТО)

Принцип действия ТО был рассмотрен выше.

Здесь рассматривается ТО в токовых защитах трансформаторов.

Напомним, что токовая отсечка - это максимальная токовая защита (МТЗ) с ограниченной зоной действия (как правило, без выдержки времени), но может иметь в некоторых случаях выдержку времени.

В отличие от МТЗ, селективность ТО обеспечивается не выдержкой времени, а выбором зоны её действия величиной тока срабатывания и основан на том, что величина тока КЗ убывает при удалении места КЗ от источника питания.

Токовая отсечка наиболее простая и быстродействующая защита от повреждений в трансформаторе. Принцип действия ТО основан на большом различии в токах КЗ на первичной и вторичной сторонах трансформатора. Реагируя только на большие токи КЗ, ТО имеет ограниченную зону действия (ошиновка, вводы, первичная обмотка трансформатора). ТО устанавливается со стороны питания, но при КЗ воздействует на выключатели со стороны высшего и низшего напряжения. ТО применяют для двухобмоточных трансформаторов, не оборудованных дифференциальной защитой. Как правило, ТО применяется совместно с МТЗ. В таких схемах ТО срабатывает без выдержки времени (собственное время срабатывания) при больших токах КЗ, а МТЗ - при меньшем токе. Поэтому ТО защищает от повреждений внутри трансформатора (витковые замыкания, на землю), а МТЗ - от повреждений во вторичной обмотке или на шинах низкого напряжения.

Достоинством отсечки является её простота и быстродействие и в сочетании с МТЗ и газовой защитой.

2.2 Максимальная токовая защита (МТЗ)

МТЗ применяется для защиты силовых трансформаторов от внешних и внутренних КЗ и защищает первичную и вторичную обмотки. Она является относительно медленнодействующей, так как имеет всегда выдержку времени. Применяется в качестве основной для маломощных трансформаторов. Если трансформатор снабжён отдельной быстродействующей защитой от внутренних повреждений, то МТЗ используется для защиты от внешних КЗ и в качестве резервной на случай выхода из строя основных защит.

а) МТЗ двухобмоточного понижающего трансформатора с соединением ТТ в «треугольник» с двумя реле (Ксх.=√3).

Эта защита может использоваться и для защиты от повреждений в маломощных трансформаторах. Для мощных трансформаторов при наличии специальной защиты от внутренних поврежднений, защита от внешних КЗ служит резервом к этой защите.

Наиболее простой защитой от внешних КЗ является МТЗ или более чувствительные, например, МТЗ с блокировкой по напряжению (пуском по напряжению), МТЗ направленные, ДЗ и др.

На рис.9.1. представлена схема МТЗ двухобмоточного понижающего трансформатора с соединением ТТ в «треугольник» с двумя реле. Данная схема МТЗ является наиболее простой защитой от внешних КЗ. Чтобы включить в зону действия защиты сам трансформатор, МТЗ устанавливается со стороны источника питания и должна действовать на отключение выключателя, а сами реле защиты включаются на трансформаторы тока, установленные на выключателе Q2. При возникновении КЗ реле КА1, КА2 сработав, (с выдержкой времени при помощи реле КТ1, КТ2) одновременно действуют на отключение выключателей Q1и Q2. При этом действие выключателя Q2 резервирует действие Q1 (рис.9.1а).

Иногда МТЗ выполняются с двумя выдержками времени: первая (t1) на отключение Q1, а вторая (t2=t1+∆t) на отключение Q2 (рис.9.1,в). Отключение Q2 в этом случае произойдёт при повреждениях в самом трансформаторе.

В данной схеме трансформаторы тока (ТТ) соединены в треугольник с двумя реле. Могут применятся и другие схемы соединений:

в полную звезду с тремя реле;

неполную звезду с тремя или двумя реле;

треугольник с тремя реле.

Выбор схемы соединений ТТ зависит от вида КЗ и схем соединений обмоток трансформаторов.

В таблице 9.1. приведены различные варианты схем МТЗ и формулы для определения наибольшего из вторичных токов Iр.min.(2) при двухфазном КЗ за силовым трансформатором в минимальном режиме работы системы через ток трёхфазного КЗ Iк.min., приведённый к той стороне трансформатора, где установлена защита.

Рис. 9.1 Схема МТЗ двухобмоточного понижающего трансформатора: а) схема токовых сетей; б) схема оперативных цепей; в) структурная схема

КА1, КА2- токовые реле; Q1, Q2- выключатели; КТ1, КТ2-реле времени; КL1, KL2-выходные промежуточные реле; КН1,КН2- указательные реле.

б) МТЗ двух обмоточного понижающего трансформатора с комбинированным пуском (блокировкой) по напряжению и фильтром напряжений обратной последовательности с соединением ТТ в неполную звезду с двумя реле(Ксх.=1) .

МТЗ (рис. 9.1) не всегда удовлетворяет условиям чувствительности, поэтому данную защиту применяют для повышения чувствительности к токам КЗ. В этом виде защит применяют т.н. пусковые органы по напряжению на сторонах низшего напряжения (реле КV1, KV, ZV2 на рис.9.2.). Необходимым условием срабатывания МТЗ является одновременное замыкание контактов токового реле и пускового органа по напряжению.

Таблица 9.1

Схема МТЗКсх.Ток в реле при в месте установки МТЗ или за трансформатором Y∕ Y-12,а.Ток в реле за трансформатором Y ∕ ∆-11,а.Полная звезда с тремя реле1Неполная звезда с двумя реле1Неполная звезда с тремя реле1Треугольник с тремя реле√3Треугольник с двумя реле√3

Рис.9.2 Схема МТЗ двухобмоточного понижающего трансформатора с комбинированным пуском по напряжению и фильтром напряжений обратной последовательности: а)- схема токовых цепей; б)- схема оперативных цепей

трансформатор предохранитель отсечка токовый

КА1, КА2- токовые реле; KV1KV2- реле напряжения;

ZV2- фильтр напряжений обратной последовательности;

В данной схеме используется фильтр напряжений обратной последовательности ZV2.

В случае двухфазного КЗ схема работает следующим образом. При аварийном режиме на выходе ZV2 появляется напряжение обратной последовательности, реле KV2 срабатывает, размыкая свой контакт. Это приводит к обесточиванию реле KV1 и его контакт KV1 в цепи реле KL замыкается и оно срабатывает (замыкается контакт KL1 в цепи реле времени КТ). Если при этом сработали и реле тока КА1 или КА2, то реле КТ сработает и подаст сигнал на отключение выключателей Q1 и Q2.

В случае трёхфазного КЗ напряжение обратной последовательности отсутствует и реле KV2 не срабатывает. Но при таком виде КЗ снижается напряжение на шинах и срабатывает реле минимального напряжения KV1(замыкается его контакт KV1) и (если замкнулись контакты КА1.1 и КА2.2 реле КА1и реле КА2) сработают реле KL и КТ, подавая сигнал на отключение выключателей Q1 и Q2.

в) МТЗ трёхобмоточного понижающего трансформатора.

При внешних КЗ МТЗ трёхобмоточных трансформаторов должна обеспечивать селективное отключение той обмотки, которая непосредственно питает место повреждения. На трёхобмоточных трансформаторах с односторонним питанием устанавливаются три комплекта МТЗ, действующие на соответствующие выключатели (рис.9.3)

Рис. 9.3 Упрощенная схема МТЗ понижающего трёхобмоточного трансформатора

Комплект МТЗ 1(КА1) на обмотке I предназначен для отключения трансформатора при КЗ в нём и резервирования МТЗ 2 (КА2) и МТЗ 3 (КА3) для этого выдержка времени t1 должна быть больше t2 (t1> t2).

На трёхобмоточных трансформаторах, имеющих многостороннее питание, и для особо ответственных трансформаторов может применяться направленная МТЗ с реле направления мощности.

2.3 Газовая защита трансформаторов

Газовая защита (ГЗ) реагирует на выделение из трансформаторного масла газа в результате разложения масла и изолирующих материалов при возникновении в трансформаторе электрической дуги. Будучи легче масла, газы поднимаются и создают сильное давление благодаря которому масло в кожухе трансформатора перемещается и через поплавок и систему контактов подаёт сигнал на отключение. Газовая защита реагирует также и на понижение уровня масла в трансформаторе.

Газовая защита получила широкое распространение в качестве чувствительной защиты от внутренних повреждений трансформаторов.

ГЗ осуществляется с помощью специальных газовых реле. Газовое реле представляет собой металлический кожух, врезанный в маслопровод между баком трансформатора и расширителем. Реле заполнено маслом. Кожух имеет смотровое стекло со шкалой, с помощью которой определяется объем скопившегося в реле газа. На крышке газового реле имеется краник для выпуска воздуха и взятия пробы газа для его анализа, а также расположены контакты для подключения кабеля.

Конструкции газовых реле различаются принципом исполнения реагирующих элементов в виде:

-поплавка;

-лопасти;

а) Поплавковые реле.

У поплавковых реле внутри кожуха укреплены на шарнирах два поплавка, представляющие собой полые металлические цилиндры. На поплавках укреплены ртутные контакты, соединенные гибкими проводами с выводными зажимами на крышке реле. Ртутный контакт представляет собой стеклянную колбочку с впаянными в ее вертикальную часть двумя контактами. Колбочки содержат небольшое количество ртути, которая в определенном положении колбочки замыкает между собой контакты, чем создается цепь через реле. При скорости движении потоков газа и масла порядка 0,5м/с нижний поплавок, находящийся на пути потока опрокидывается и происходит замыкание его ртутных контактов в цепи отключения. Благодаря тому, что при КЗ в трансформаторе сразу возникает бурное газообразование, ГЗ производит отключение с небольшим временем 0,1-0,3сек. Отключающий элемент работает также при большом понижении уровня масла в корпусе реле.

Источником питания электрооборудования на предприятиях являются силовые трансформаторы, чаще всего их работа связана с высоким напряжением (более 1000 В) и большими токами. Поэтому их габариты, стоимость, а также затраты на ремонт являются ощутимыми даже для крупного производства. В связи с этим соответственно, чтобы и сами эти дорогостоящие устройства и электрооборудование, которое с помощью их питается, были надёжно защищены применяется целый рад защит. Выбор их и настройка дело довольно непростое, поэтому стоит подробно разобрать каждый из них. Конечно же, это касается только крупных трёхфазных трансформаторов на подстанциях. Для питания и защиты маломощных трансформаторов достаточно автоматического выключателя или же предохранителей. Слишком дорого и неоправданно устанавливать полный список защит, например, на все сварочные трансформаторы, применяемые в цехе.

Основные защиты трансформатора

Любая релейная защита трансформатора направлена на срабатывание при повреждении или же ненормальном режиме работы этого устройства. Нужно отметить, что некоторые из них направлены на мгновенное отключение в случае аварии, а другие только подают предупреждающий сигнал персоналу. В свою очередь, персонал уже действует по инструкциям, которые разработаны непосредственно и индивидуально для каждой схемы снабжения и распределительной подстанции. Для того чтобы было видно какой тип аварии произошёл применяются параллельно и сигнальные реле (блинкер), которые должны быть подписаны в соответствии с правилами.

Для защиты трансформатора применяется целый комплекс мероприятий и электромеханических схем, вот основные из них:

  1. Дифференциальная защита. Она предохраняет от повреждений и коротких замыканий как в обмотках, так и на наружных выводах. Действует только на отключение;
  2. Газовая защита. Защищает от превышения давления внутри расширительного бачка вследствие выделения газов или же выброса масла, а также от снижения его уровня ниже определённого критического показания;
  3. Тепловая защита. Она организована в основном на термосигнализаторах (ТС), которые подают сигнал на пульт персонала или же на включения вентиляторов охлаждения. Такой вид дополнительной защиты служит как предупреждающий при начальных стадиях аварийных ситуаций. При этом выбор самого ТС не важен, главное, выставить правильно диапазон, при котором должен подаваться сигнал. Максимально допустимый нагрев масла составляет 95 градусов;
  4. Защита минимального напряжения. Предусматривает отключение при снижении входного уровня напряжения ниже допустимого. Зачастую имеет выдержку времени, которая даст возможность не реагировать на небольшие просадки;
  5. От замыкания на землю. Выполняется путём установки трансформаторов тока в соединение корпуса и заземляющего контура;
  6. Максимальная токовая (МТЗ) выполняет роль защитного механизма как при коротких замыканиях в цепи вторичного тока, так и при больших перегрузках.

Защита трансформатора дифференциальная

Это одна из самых быстродействующих и важных защит, которая необходима для надёжной эксплуатации следующих трансформаторов:

  1. На понижающих одиночно работающих трансформаторах мощность которых выше чем 6300 кВА;
  2. При параллельной работе данных устройств с мощностью 4000 кВА и выше. При этом таком подключении данная защита является гарантией не только быстродействия, но и селективного отключения только того устройства, которое повреждено, а не полного обесточивания питаемого электрооборудования повлекшее за собой потери в производстве продукции или в появлении бракованных изделий;
  3. Если МТЗ трансформатора не даёт необходимой чувствительности и скорости отключения, и может срабатывать с выдержкой времени более одной секунды;
  4. Если трансформаторы меньшей мощности, то применяется обычная токовая отсечка, подключенная к реле тока.

а - нормальная работа, б - при возникновении короткого замыкания между обмотками.

Принцип действия дифференциальной защиты основан на сравнении тока, а точнее, его величины. Сравнивание происходит в конце и в начале защищаемого участка. Участком в данном случае служит одна из понижающих обмоток. То есть один трансформатор тока устанавливается с высокой, а другой с низкой стороны.

На схеме видно подключение трансформаторов ТТ1 и ТТ2 соединенных последовательно. Т - это реле тока, которое остаётся в бездействии при нормальной работе, когда токи одинаковы, то есть их разность будет равна нулевому значению. Во время возникновения короткого замыкания в защищаемом участке цепи появится разность токов и реле втянется, тем самым отключив трансформатор от сети. Такой вид защиты будет срабатывать как при межвитковых, так и при межфазных замыканиях. Мгновенная работа такого защитного оборудования не требует выдержки времени, так как её быстрое срабатывание является её основным положительным фактором. Выбор вставки срабатывания реле Т должен выполнятся электротехническими лабораториями или же проектировщиками данного оборудования. Для каждого конкретного случая уровень тока втягивания реле можно изменять, чтобы не было ложных срабатываний.

Принцип действия газовой защиты трансформаторов

Газовая защита силовых трансформаторов основана на работе газового реле, которое и изображено на рисунке.

В специальном окошке при выделении газов можно увидеть пузырьки.

Реле представляет собой металлический сосуд, в котором расположены два специальных поплавка. Они врезаны в наклонный трубопровод. В свою очередь, данный трубопровод является связывающим звеном между охлаждающий корпусом имеющим радиатор и расширительным баком.

Если трансформатор находится в рабочем исправном состоянии газовое реле его наполнено трансформаторным маслом, а поплавки реле находятся в определённом нерабочем состоянии, так как внутри их масло. Поплавки непосредственно соединены с контактной группой, которая имеет аварийный и предупредительный сигнал. В нормальном состоянии контакты находятся в разомкнутом положении. При нагреве масла в случае ненормального процесса в работе из него выделяется газ, который по закону физики легче, естественно, подымается вверх. На пути газов находится газовое реле и его поплавки, которое при накоплении определённого количества поднимающего его газа начинает движение, чем и размыкает первую ступеньку. При более бурном развитии событий и второй поплавок приводится в движение и замыкает уже вторую ступень которая приводит к отключению. Взятие пробы масла и его проверка, а также химический анализ позволяет определить суть повреждения.

Из практики же не каждое срабатывание газового реле приводит к взятию проб и анализу масла, иногда при заливке может попасть в систему воздух которой во время эксплуатации будет подниматься и сможет стать причиной срабатывания данной защиты. Для этого нужно всего лишь открыть специальный краник (вентиль), находящийся на корпусе реле и выпустить воздух. Эта процедура выполняется при первом срабатывании предупредительного поплавка.

Выбор самого реле основывается на конструкции трансформатора и его габаритах. Очень часто применяются несколько типов данного устройства РГЧЗ-66, ПГ-22, BF-50, BF-80, РЗТ-50, РЗТ-80. Все они имеют смотровое окошко и герметичный корпус.

Газовая защита трансформатора и принцип действия, работы в принципе несложны стоит только один раз разобраться в них.

Максимальная токовая защита трансформатора

Основную роль отключающего устройства при повышении критического уровня тока, для трансформаторов не масляных и обладающих малой мощностью, служит предохранитель. Такой элемент защиты даёт возможность персоналу, не понимающему причины отключения, повторно произвести включение, которое может принести вред оборудованию или пожар. Предохранителями оборудованы также измерительные трансформаторы напряжения, которые расположены на подстанциях в ячейках КРУ, в таких же, как и масляные выключатели. Они предназначены для измерения напряжения в сети 6000 кВ и выше, а также для цепей защиты от повышенного или пониженного напряжения.

Для трансформаторов выбор предохранителей осуществляется из такого соотношения

Iвс - ток плавкой вставки предохранителя;

Iн. тр. - номинальный ток первичной обмотки трансформатора, в цепь которого он и устанавливается.

Предохранитель - самый простой способ защитить трансформатор от превышения тока.

Ток срабатывания максимальной защиты при установке её с низшей стороны, выбирается в соответствии с величиной нагрузки, на которую рассчитан трансформатор. Конечно же, выбирая релейную защиту данного устройства, стоит учесть также пусковые кратковременные токи, которые возникают при запусках электрических вращающихся машин. Работа таких защит основана на трансформаторах тока, вот парочка самых распространённых схем подключения.

Здесь имеется два уровня (степени) отключения, один может быть отключением от перегрузов, а другой уже срабатывает как максимальная токовая отсечка, при значительном повышении тока в контролируемых цепях, в том числе и при К.З. Цифрой 6 обозначены измерительные приборы.

Ниже представлена более усовершенствованная и развёрнутая схема уже непосредственно с подключением реле в цепи катушек маслинных выключателей.

Защита печных трансформаторов

Работа печей связана с резким нарастанием и снижением тока, поэтому дифференциальную защиту здесь применять не рекомендуется, а только газовую и тепловую. Нагревательные элементы таких печей могут работать от пониженного напряжения от 220–660 Вольт. Чаще всего здесь применяются специальные электропечные трансформаторы. Конечно же, речь идёт от печах для плавки металла, а не для приготовления пищи. В них режимы плавки меняются как питающим напряжением, так и величиной тока дуги. Печные трансформаторы должны быть оборудованы защитой от перегрузок, а также при возникновении К. З. Защиту от перегрузок устанавливают на низкой стороне, а трансформаторы тока для мгновенного срабатывания на высокой стороне. При этом уставку реле настраивают таким образом, чтобы она не отключалась при нормальных эксплуатационных К. З, ведь они работают в таком режиме и при некоторых коротких замыкания отключение не должно происходить, а только лишь поднятие электродов.

В любом случае в итоге хочется отметить что от настройки и правильности срабатывания зависят последствия ненормальных режимов работы трансформатора, а значит и стоимость последующего ремонта.