Вольт амперная характеристика полупроводника диода. Характеристики и параметры выпрямительных и универсальных диодов

Выпрямительными диодами называют полупроводниковые приборы с одним p-n–переходом, имеющие два вывода и предназначенные для выпрямления переменного тока. Вторым элементом обозначения этих диодов является буква «Д» (КД202А). Условное графическое изображение выпрямительного диода показано на рис. 2.1.

Рис. 2.1. Графическое изображение выпрямительного диода (Iпр – направление прямого тока)

Вольт - амперная характеристика (ВАХ) выпрямительного диода представляет собой зависимость тока, протекающего во внешней цепи диода, от значения и полярности напряжения, прикладываемого к нему. Эту зависимость можно получить экспериментально или рассчитать с помощью уравнения вольт - амперной характеристики идеализированного p-n–перехода

(2.1)

где: I 0 – обратный ток насыщения;

φТ – температурный потенциал, равный (0,026 В) при комнатной температуре (Т = 300 К);

U – напряжение, прикладываемое к диоду.

Теоретический график ВАХ выпрямительного диода, рассчитанный с помощью выражения (2.1), представлен на рис. 2.2,а. При увеличении обратного напряжения Uобр обратный ток Iобр , протекающий через p-n-переход диода, достигает предельного значения I 0уже при Uобр = 0,1…0,2 В. Следует отметить, что чем больше ширина запрещенной зоны полупроводника и чем выше в нем концентрация примесей, тем меньше величина I 0.

Рис. 2.2. Вольт – амперные характеристики выпрямительного диода:

а – теоретическая; б – экспериментальная

При выводе уравнения (2.1) учитывались только диффузионные компоненты тока, протекающего через p-n-переход, и не учитывались такие явления, как термогенерация носителей зарядов в запирающем слое p-n-перехода, поверхностные утечки тока, падение напряжения на сопротивлении нейтральных областей полупроводника, а также наличие пробоя при повышении обратного напряжения. Поэтому теоретический график ВАХ выпрямительного диода отличается от графика ВАХ, снятого экспериментально (рис. 2.2,б).

В реальном диоде при некотором обратном напряжении наблюдается резкое возрастание обратного тока. Это явление называют пробоем p-n-перехода. Существуют три вида пробоя: туннельный, лавинный и тепловой. Для выпрямительных диодов наибольшее значение имеет тепловой пробой p-n-перехода, так как он приводит к выходу диода из строя.

Тепловой пробой диода обусловлен катастрофическим нарушением его теплового режима. Подводимая к p-n-переходу мощность P = Iобр Uобр расходуется на его нагрев. Образующиеся при этом одноименные носители заряда увеличивают обратный ток, что приводит к увеличению выделяемой мощности и дальнейшему разогреву перехода. При плохих условиях отвода тепла от кристалла процесс принимает лавинообразный характер и заканчивается разрушением кристалла, т.е. выходом диода из строя. Увеличение числа носителей зарядов при нагреве p-n-перехода приводит к уменьшению его сопротивления и выделяемого на нем напряжения. Вследствие этого при тепловом пробое на обратной ветви ВАХ появляется участок с отрицательным дифференциальным сопротивлением (участок АВ на рис. 2.2). Так как число носителей (а значит, и обратный ток, и выделяемая в переходе мощность) резко (по экспоненциальному закону) увеличиваются с увеличением температуры, то для исключения теплового пробоя температура p-n-перехода должна быть меньше допустимой температуры перехода , которая для германиевых диодов составляет (70-80) о С, а кремниевых – (120-150) о С. В маломощных диодах для этого достаточно выполнить условие . В мощных диодах кроме этого может потребоваться искусственное охлаждение. Величина является важнейшим параметром диода и приводится в соответствующих справочниках. С увеличением температуры возрастает обратный ток диода, и ухудшаются условия отвода тепла, поэтому с увеличением температуры величина заметно уменьшается.

При прямом включении выпрямительного диода отличия теоретической ВАХ от ВАХ, снятой экспериментально, в основном обусловлены сопротивлением R 1 электронной и дырочной областей за пределами запирающего слоя. Если сопротивление запирающего слоя обозначить через Rзс , то кристалл полупроводника с запирающим слоем можно представить в виде последовательного соединения резисторов Rзс и R 1 (рис. 2.3).

При прохождении прямого тока Iпр на сопротивлении R 1 падает часть напряжения Uпр внешнего источника и на запирающем слое действует напряжение . В этом случае уравнение ВАХ может быть записано в следующем неявном виде:

Рис. 2.3. Упрощенная эквивалентная схема p-n-перехода

с распределенным сопротивлением полупроводника

Поскольку Uзс < Uпр вольт – амперная характеристика диода, снятая экспериментально, идет ниже теоретической.

С увеличением прямого напряжения Uпр сопротивление запирающего слоя Rзс уменьшается вследствие инжекции в него основных носителей заряда. При большом значении Uпр , сопротивлением запирающего слоя Rзс можно пренебречь и дальнейшее увеличение прямого тока ограничивается распределенным сопротивлением полупроводников p- и n-типа за пределами p-n-перехода. При этом ВАХ диода переходит в прямую линию.

Основными параметрами выпрямительных диодов являются:

Максимально-допустимый прямой ток, при котором температура диода достигает ;

Максимально-допустимое обратное напряжение, при котором не происходит пробоя p-n-перехода диода, обычно ;

Прямое и обратное сопротивления диода постоянному току, определяемые по его ВАХ (рис. 2.2) с использованием следующих соотношений:

R д пр = Uпр1 / Iпр1; R д обр = Uобр / Iобр;

Прямое и обратное дифференциальные сопротивления диода (сопротивления переменному току), которые определяются из следующих соотношений:

r i .пр = ΔUпр / ΔIпр; r i. обр = ΔUобр / ΔIобр.

При этом значения приращений тока ΔI и напряжений ΔU определяются на линейном участке ВАХ в окрестности заданной точки Х (рис. 2.2). Из-за нелинейности ВАХ диода и обе эти величины зависят от рабочей точки, т.е. от величины постоянного напряжения, приложенного к диоду.

В зависимости от значения выпрямляемого тока различают диоды малой , средней и большой мощности. Диоды малой мощности могут рассеивать выделяемую на них теплоту своим корпусом. Для рассеивания теплоты диоды средней мощности располагают на радиаторах охлаждения, для диодов большой мощности может потребоваться и искусственное охлаждение.

Характеристики и параметры выпрямительных диодов существенно зависят от полупроводникового материала, в первую очередь от ширины запрещенной зоны ΔW. На рис. 2.4 представлены вольт – амперные характеристики германиевого (Ge) и кремниевого (Si) выпрямительных диодов, имеющих одинаковую конструкцию и предназначенных для работы в одном и том же диапазоне токов и напряжений. Так как ширина запрещенной зоны у кремния больше, чем у германия, обратный ток кремниевых диодов значительно (несколько порядков) меньше.

У германиевого диода на обратной ветви ВАХ имеется ярко выраженный участок насыщения, поскольку его обратный ток определяется током экстракции, который описывается уравнением (2.1). Обратный ток кремниевого диода монотонно возрастает с увеличением U обр , так как у кремниевых диодов ток экстракции весьма мал и обратный ток определяется главным образом токами термогенерации и утечки.


Рис. 2.4. Вольт - амперные характеристики германиевого (Ge) и кремниевого (Si) выпрямительных диодов

При дальнейшем увеличении обратного напряжения в диодах происходит пробой. Вследствие большого обратного тока у германиевых диодов наступает тепловой пробой, приводящий к разрушению кристалла. У кремниевых диодов из-за малого обратного тока вероятность теплового пробоя мала, и у них вначале возникает электрический пробой, который может перейти в тепловой пробой при слишком большом увеличении тока.

Прямой ток полупроводникового диода также зависит от ΔW , так как увеличение ΔW приводит к увеличению потенциального барьера в переходе и, следовательно, к уменьшению прямого тока. Сравнение германиевых и кремниевых диодов легко провести с помощью формулы (2.1): вследствие меньшего значения I 0 для кремниевого диода его прямой ток, равный току германиевого диода, достигается при большем значении прямого напряжения. Поэтому при одних и тех же значениях I пр , мощность, рассеиваемая германиевыми диодами, меньше чем кремниевыми. По этой же причине у германиевых диодов существенно меньше U пор и r i пр .

На характеристики диодов существенное влияние оказывает температура окружающей среды. С ростом температуры становится интенсивнее термогенерация носителей зарядов, что приводит к увеличению как обратного, так и прямого тока диода, однако причины этого роста неодинаковы.

Обратный ток является током неосновных носителей зарядов, и увеличение их концентрации в результате усиления термогенерации непосредственно ведет к росту обратного тока. Прямой ток является током основных носителей зарядов, концентрация которых в рабочем диапазоне температур от температуры не зависит. Однако увеличение концентрации неосновных носителей зарядов при повышении температуры приводит к уменьшению высоты потенциального барьера перехода, что и вызывает увеличение прямого тока.

Для приближенной оценки можно считать, что с увеличением температуры на 10 О С обратный ток германиевых диодов возрастает в 2, а кремниевых – в 2,5 раза. Однако вследствие того, что при комнатной температуре обратный ток у германиевого диода значительно больше, чем у кремниевого, абсолютное значение приращения обратного тока у германиевого диода с ростом температуры оказывается в несколько раз больше, чем у кремниевого. Это приводит к увеличению потребляемой диодом мощности, его разогреву и уменьшению напряжения теплового пробоя.

ВАХ ВЫПРЯМИТЕЛЬНОГО ДИОДА

РЕЗИСТОРЫ, КОНДЕНСАТОРЫ

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Резисторы

Резисторы относятся к наиболее распространенным деталям радиоэлектронной аппаратуры. На их долю приходится от 20 до 50%, т. е. до половины общего количества радиодеталей в устройстве. Принцип работы резисторов основан на использовании свойства материалов оказывать сопротивление протекающему току. Резисторы характеризуются следующими основными параметрами:

Номинальное значение сопротивления . Измеряется в омах (Ом), килоомах (кОм), мегаомах (МОм). ,

Номинальные значения сопротивлений указывают на корпусе резистора. Номинальное значение сопротивления соответствует значению из стандартных рядов сопротивлений, приведенных в приложении 1.

Допустимое отклонение действительного сопротивления резистора от его номинального значения. Это отклонение измеряется в процентах, оно нормировано и определяется классом точности. Наиболее широко используются три класса точности: I – допускающий отклонение сопротивления от номинального значения на ± 5%, II – на ±10%, III – на ±20%. В современной РЭА часто применяют резисторы с повышенной точностью сопротивления, они выпускаются с допусками (%): ±2; ±1; ±0,5; ±0,2; ±0,1; ±0,05; ±0,02; ±0,01 и т. д.

Номинальное значение мощности рассеивания резистора Rном. Этот параметр измеряется в ваттах (Вт). Это наибольшая мощность постоянного или переменного тока, при протекании которого через резистор он может работать длительное время без повреждений. Мощность Рном, ток I, протекающий через резистор, падение напряжения U на резисторе и его сопротивление R связаны зависимостью: P=UI U=IR. В большинстве устройств РЭА применяют резисторы с номинальной мощностью рассеивания от 0,125 до 2 Вт.

Температурный коэффициент сопротивления (ТКС) резистора. Характеризует относительное изменение сопротивления резистора при изменении температуры окружающей среды на 1°С и выражается в процентах. В резисторах ТКС незначительный и составляет в среднем десятые доли – единицы процента.

Электродвижущая сила (ЭДС) собственных шумов. Собственные шумы резистора возникают за счет неупорядоченного движения части электронов при приложенном к нему напряжении. ЭДС собственных шумов (Еш) измеряется в микровольтах на вольт приложенного напряжения (мкВ/В). Эта величина для резисторов также незначительная и составляет единицы микровольт на вольт.

Собственная индуктивность и емкость резисторов. Определяются габаритными размерами, конструкцией и влияют на частотный диапазон применения резисторов.

Резисторы используют для ограничения силы тока в цепях, для создания на отдельных участках схем необходимых падений напряжений, для различных регулировок (громкости, тембров и т. д.) и еще во многих случаях.

Условно-графическое обозначение резисторов и схемы соединения

Согласно ГОСТ2.728-74, УГО постоянного проволочного резистора имеет следующий вид:

Рис. 1. УГО проволочного резистора

Существуют два основных вида схем включения резисторов – последовательное включение резисторов и параллельное.

При последовательном включении резисторов их эквивалентное сопротивление будет равно сумме всех отдельных сопротивлений

При параллельном включении резисторов их эквивалентное сопротивление можно рассчитать по формуле

.

Конденсаторы

Электрическим конденсатором называют устройства, предназначенные для накопления электрического заряда.

Принцип действия конденсатора основан на накоплении электрического заряда между двумя близко расположенными проводниками. Такие проводники так же называются обкладками. В зависимости от типа диэлектрика, который разделяет обкладки различают виды конденсаторов.

К основным параметрам конденсатора относят:

Электрическая номинальная емкость – способность конденсатора накапливать на обкладках электрические заряды под воздействием электрического поля. Номинальная емкость указывается на конденсаторе или в сопроводительной документации, выбирается в соответствии с установленным рядом. Измеряется в фарадах [Ф], однако 1Ф достаточно крупная величина, поэтому значение обычных конденсаторов употребляется с приставками нано- (10 –9), микро- (10 –6), мили- (10 –3).

Допустимое отклонение действительного емкости конденсатора от его номинального значения. Это отклонение измеряется в процентах, оно нормировано и определяется классом точности.

Температурный коэффициент емкости (ТКЕ) – относительное изменение емкости конденсатора под действием температуры. Под действием температуры обкладки конденсатора меняют свои геометрические размеры, изменяется расстояние между ними и значение диэлектрической проницаемости диэлектрика, поэтому изменяется и значение емкости конденсатора. Для всех конденсаторов данная зависимость нелинейная, однако, в зависимости от типа диэлектрика, для некоторых она приближается к линейной.

Номинальное напряжение U – максимально допустимое значение постоянного напряжения (или суммы постоянной составляющей и амплитуды переменной составляющей) при котором конденсатор может работать в течении всего гарантированного срока службы при нормальной температуре.

Условно-графическое обозначение конденсаторов и схемы соединения

Согласно ГОСТ2.728-74на принципиально-электрических схемах конденсаторы обозначаются:

Рис. 2. УГО конденсатора

Существуют два основных вида схем включения конденсаторов – последовательное и параллельное.

При параллельном включении конденсаторов их емкость складывается по формуле

.

При последовательном включении конденсаторов их эквивалентную емкость можно рассчитать по формуле


.

Маркировка резисторов и конденсаторов

Маркировка резисторов

Согласно ГОСТ 28883-90 – промышленно выпускаемых резисторах применяется следующие системы маркировок:

Буквенная полная

Параметры и характеристики, входящие в полное условное обозначение резистора, указываются в следующей последовательности: номинальная мощность рассеяния, номинальное сопротивление и буквенное обозначение единицы измерения, допускаемое отклонение сопротивления в процентах (%), функциональная характеристика, обозначение конца вала и длинны выступающей части вала.

Пример полного условного обозначения постоянного непроволочного резистора с регистрационным номером 4, номинальной мощностью рассеяния 0,5 Вт, номинальным сопротивлением 10 кОм, с допуском ±1%, группой по уровню шумов А, группы ТКС – Б, все климатического исполнения В.

Р1-4‑0,5‑10кОм±1% А-Б-В ОЖО.467.157 ТУ

Буквенные сокращения

Ввиду того что полное условное обозначение занимает значительное место на корпусе резистора, то его применение не всегда возможно и удобно, поэтому было введено сокращенное буквенное обозначение в состав которого входит обозначение номинального сопротивления и допускаемого отклонения. Номинальное сопротивление обозначается в виде кода. Кодированное обозначение номинального сопротивления состоит из трех или четырех знаков, включающих в себя две или три цифры и букву латинского алфавита. Буква кода из русского или латинского алфавита обозначает множитель, составляющий сопротивление, и определяет положение запятой десятичного знака. Буквы R, K, M, G, T обозначают соответственно множители 1, 10 3 , 10 6 , 10 9 , 10 12 . Примеры кодированных обозначений номинального сопротивления выглядят следующим образом: 215 Ом – 215R, 150 кОм – 150K,2,2 Мом – 2M2,6,8 ГОм – 6G8,1 ТОм – 1T0 Кодированное обозначение допускаемого отклонения состоит из буквы соответствующей отклонению в %. Значение букв кодировки приведено в приложении 2.

Помимо описанной выше кодировки в промышленно выпускаемых резисторах применяется цветовая кодировка.

Маркировка конденсаторов

Краткая буквенная маркировка конденсатора выполняется по аналогичным правилам, что и маркировка резисторов. Номинальная емкость конденсатора выражается с помощью 3-4 чисел и кодового обозначения множителя. Принято использовать следующие буквы p, n, μ, m, соответствующие множителям пико- , нано-, микро-, мили- фарад.

Пример маркировки конденсатора: p10 – 0.1пФ; 1μ5 – 1.5мкФ.

ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ:

ВАХ ВЫПРЯМИТЕЛЬНОГО ДИОДА

Сравнение характеристики реального диода с характеристикой идеального p-n перехода.

Известно, что статическая ВАХ идеализированного полупроводникового диода описывается выражением:

,

где I – ток диода; U – приложенное к нему напряжение; Is – ток насыщения, определяемый параметрами p-n перехода; kT /q – тепловой потенциал (kT /q =0,0259 В при Т=300К).

Вид характеристики описанной данным выражением представлен на рис. 3.


Рис. 3. ВАХ идеального p-n перехода.

При изображении ВАХ масштаб по осям прямых и обратных напряжений выбирается разным, так как эти значения различаются на порядки. Разные масштабы создают впечатление излома характеристики в нулевой точке, в действительности же ВАХ является дифференциально-гладкой. На прямой ветви характеристики зависимость тока от напряжения носит экспонентациальный характер, а после прохождения напряжение через пороговое значение U пр дальнейшее изменение напряжения на десятые доли вольта вызывает значительное изменение тока через диод.

Единственный параметр ВАХ, связанный с физико-конструктивными параметрами и геометрическими размерами активной области диода, является ток насыщения I s .

где q – заряд электрона; n i – собственная концентрация носителей заряда в полупроводнике; N Db и L pb – коэффициент диффузии и диффузионная длинна неосновных носителей в ней; W b – толщина базы; F площадь p-n перехода.

ВАХ реального диода отличается от характеристики идеального p-n перехода в силу ряда причин:

· Рекомбинации и генерации дырок и электронов в ОПЗ перехода

· Падения напряжения на объемном сопротивлении базы

· Появления эффектов высокого уровня инжекции при больших токах

· Наличия токов утечки через p-n переход

· Начала пробоя на обратной ветви ВАХ

· Неоднородного легирования базы

· Разогрева p-n перехода выделяемой мощностью

Перечисленные эффекты приводят к тому, что ВАХ диода описывается только качественно.

Обратная ветвь ВАХ образуется суммой трех составляющих:

тока насыщения I s , тока термогенерации в ОПЗ p-n перехода I G и тока утечки I ут . Соотношение между этими составляющими для диодов из разных полупроводниковых материалов различно

Ток термогенерации в p-n-переходе описывается формулой

где δ – ширина p-n-перехода; τ pn – эффективное время жизни, характеризующее темп генерации электронно-дырочных пар в ОПЗ перехода. Ток зависит от приложенного обратного напряжения через зависимость δ (U ).

Ток утечки обусловлен проводящими каналами внутри p-n-перехода и на поверхности кристалла. Он зависит от площади и периметра перехода и ряда других факторов и имеет примерно линейную зависимость от обратного напряжения.

Прямая ветвь ВАХ реального диода сохраняет экспоненциальную зависимость тока от напряжения, поэтому ее можно описывать выражениями типа:


где I 0 и m – параметры характеристики, которые могут изменяться на различных участках ВАХ.

Сравнение характеристик диодов из различных
материалов

Исследуемые в работе диоды выполнены из различных полупроводниковых материалов, но имеют примерно одинаковые физико-конструктивные параметры. Отличие их характеристик связано с отличием параметров:

· Ширины запрещенной зоны

· Подвижности носителей заряда

· Время жизни носителей заряда и др.

Наибольшее влияние на различие параметров оказывает разница в значениях ширины запрещенной зоны E g . Она определяет собственную концентрацию носителей заряда n i которая входит в выражение параметров ВАХ.

Значение ширины запрещенной зоны E g и n i приведены в приложении 3.

Токи насыщения всех диодов, кроме германиевого, очень малы и составляют единицы наноампер, поэтому основным компонентом обратного тока этих диодов является ток утечки. Основное отличие прямых ветвей ВАХ различных диодов заключается в различном значении тока насыщения. В приложении 3 приведены значения U ПР полученные теоретическим путем у реальных диодов оно может отличаться по ряду причин, в основном из-за падения на объемном сопротивлении базы.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Для исследования вольтамперной характеристики реального диода студентам необходимо произвести сборку схемы эксперимента

Рис. 4. Схема эксперимента

В качестве милиамперметра и вольтметра могут быть использованы цифровой осциллограф либо цифровые мультиметры. В качестве источника используется управляемый источник напряжения на учебном стенде NI ELVIS. В целях обеспечения бесперебойной работы генератора стенда в цепь необходимо включить ограничивающее сопротивление R, значение которого студентам необходимо рассчитать, используя параметры стенда.

После сборки схемы и её проверки преподавателем, студентам необходимо произвести серию экспериментов. Путем регулировки значения напряжения на выходе с генератора и записью показаний приборов в таблицу.

Выпрямительные диоды применяются в цепях управления, коммутации, в ограничительных и развязывающих цепях, в источниках питания для преобразования (выпрямления) переменного напряжения в постоянное, в схемах умножения напряжения и преобразователях постоянного напряжения, где не предъявляются высокие требования к частотным и временным параметрам сигналов. В зависимости от значения максимального выпрямляемого тока различают выпрямительные диоды малой мощности (\(I_{пр max} \le {0,3 А}\)), средней мощности (\({0,3 А} < I_{пр max} \le {10 А}\)) и большой мощности (\(I_{пр max} > {10 А}\)). Диоды малой мощности могут рассеивать выделяемую на них теплоту своим корпусом, диоды средней и большой мощности должны располагаться на специальных теплоотводящих радиаторах, что предусматривается в т.ч. и соответствующей конструкцией их корпусов.

Обычно, допустимая плотность тока, проходящего через \(p\)-\(n\)-переход, не превышает 2 А/мм2, поэтому для получения указанных выше значений среднего выпрямленного тока в выпрямительных диодах используют плоскостные \(p\)-\(n\)-переходы. Такие переходы имеют существенную емкость, что ограничивает максимальную допустимую рабочую частоту (\(f_р\)) выпрямительных диодов.

Выпрямительные свойства диодов тем лучше, чем меньше обратный ток при заданном обратном напряжении и чем меньше падение напряжения при заданном прямом токе. Значения прямого и обратного токов отличаются на несколько порядков, а прямое падение напряжения не превышает единиц вольт по сравнению с обратным напряжением, которое может составлять сотни и более вольт. Поэтому диоды обладают односторонней проводимостью, что позволяет использовать их в качестве выпрямительных элементов. Вольт-амперные характеристики (ВАХ) германиевых и кремниевых диодов различаются. На рис. 2.3‑1 для сравнения показаны типичные ВАХ для германиевых и кремниевых выпрямительных диодов при различных температурах окружающей среды.

Рис. 2.3-1. Вольт-амперные характеристики выпрямительных диодов при различных температурах окружающей среды

По приведенным ВАХ видно, что обратный ток кремниевых диодов значительно меньше обратного тока германиевых диодов. Кроме того, обратная ветвь вольт-амперной характеристики кремниевых диодов не имеет явно выраженного участка насыщения, что обусловлено генерацией носителей зарядов в \(p\)-\(n\)-переходе и токами утечки по поверхности кристалла. При подаче обратного напряжения превышающего некий пороговый уровень происходит резкое увеличение обратного тока, что может привести к пробою \(p\)-\(n\)-перехода. У германиевых диодов, вследствие большой величины обратного тока, пробой имеет тепловой характер. У кремниевых диодов вероятность теплового пробоя мала, у них преобладает электрический пробой. Пробой кремниевых диодов имеет лавинный характер, поэтому у них, в отличие от германиевых диодов, пробивное напряжение повышается с увеличением температуры. Допустимое обратное напряжение кремниевых диодов (до 1600 В) значительно превосходит аналогичный параметр германиевых диодов.

Обратные токи в значительной степени зависят от температуры перехода. Из рисунка видно, что с ростом температуры обратный ток возрастает. Для приближенной оценки можно считать, что с увеличением температуры на 10 °С обратный ток германиевых диодов возрастает в 2, а кремниевых - в 2,5 раза. Верхний предел диапазона рабочих температур германиевых диодов составляет 75...80 °С, а кремниевых - 125 °С. Существенным недостатком германиевых диодов является их высокая чувствительность к кратковременным импульсным перегрузкам.

Вследствие меньшего обратного тока кремниевого диода его прямой ток, равный току германиевого диода, достигается при большем значении прямого напряжения. Поэтому мощность, рассеиваемая при одинаковых токах, в германиевых диодах меньше, чем в кремниевых. Прямое напряжение при малых прямых токах, когда преобладает падение напряжения на переходе, с ростом температуры уменьшается. При больших токах, когда преобладает падение напряжения на сопротивлении нейтральных областей полупроводника, зависимость прямого напряжения от температуры становится положительной. Точка, в которой отсутствует зависимость прямого напряжения от температуры (т.е. эта зависимость меняет знак), называется точкой инверсии . У большинства диодов малой и средней мощности допустимый прямой ток, как правило, не превышает точки инверсии, а у мощных диодов допустимый ток может быть выше этой точки.

Принцип работы, основные характеристики полупроводниковых выпрямительных диодов можно рассмотреть используя их вольтамперную характеристику (ВАХ), которая схематично представлена на рисунке 1.

Она имеет две ветви, соответствующие прямому и обратному включению диода.

При прямом включении выпрямительного диода ощутимый ток через него начинает протекать при достижении на диоде определенного напряжения Uоткр . Этот ток называется прямым Iпр . Его изменения на напряжение Uоткр влияют слабо, поэтому для большинства расчетов можно принять его значение:

  • 0,7 Вольт для кремниевых диодов,
  • 0,3 Вольт - для германиевых.

Естественно, прямой ток диода до бесконечности увеличивать нельзя, при его определенном значении Iпр.макс этот полупроводниковый прибор выйдет из строя. Кстати, существуют две основные неисправности полупроводниковых диодов:

  • пробой - диод начинает проводить ток в любом направлении, то есть станет обычным проводником. Причем, сначала наступает тепловой пробой (это состояние обратимо), затем электрический (после этого диод можно смело выбрасывать),
  • обрыв - здесь, думаю, пояснения излишни.

Если диод подключить в обратном направлении, через него будет протекать незначительный обратный ток Iобр , которым, как правило, можно пренебречь. При достижении определенного значения обратного напряжения Uобр обратный ток резко увеличивается, прибор, опять же, выходит из строя.

Числовые значения рассмотренных параметров для каждого типа диода индивидуальны и являются его основными электрическими характеристиками. Должен заметить, что существует ряд других параметров (собственная емкость, различные температурные коэффициенты и пр.), но для начала хватит перечисленных.

Здесь предлагаю закончить с чистой теорией и рассмотреть некоторые практические схемы.

СХЕМЫ ПОДКЛЮЧЕНИЯ ДИОДОВ

Для начала давайте рассмотрим как работает диод в цепи постоянного (рис.2) и переменного (рис.3) тока, что следует учитывать при том или ином включении диодов.


При подаче на диод прямого постоянного напряжения через него начинает протекать ток, определяемый сопротивлением нагрузки Rн . Поскольку он не должен превышать предельно допустимого значения следует определить его величину, после чего выбрать тип диода:

Iпр=Uн/Rн - все просто - это закон Ома .

Uн=U-Uоткр - см. начало статьи. Иногда величиной Uоткр можно пренебречь, бывают случаи, когда ее необходимо учитывать, например при расчете схемы подключения светодиода .

Это самое основное, про что надо помнить.

Теперь - несколько схем подключения диодов, часто встречающихся на практике.


Вне всякого сомнения, лидером здесь является мостовая схема диодов, используемая во всевозможных выпрямителях (рисунок 4). Выглядеть она может по разному, принцип действия одинаков, думаю из рисунка все ясно. Кстати, последний вариант - условное обозначение диодного моста в целом. Применяется для упрощения обозначения двух предыдущих схем.


  1. Диоды могут выступать как "развязывающие" элементы. Управляющие сигналы Упр1 и Упр2 объединяются в точке А , причем взаимное влияние их источников друг на друга отсутствует. Кстати, это простейший вариант реализации логической схемы "или".
  2. Защита от переполюсовки (жаргонное - "защита от дураков"). Если существует возможность неправильного подключения полярности напряжения питания эта схема защищает устройство от выхода из строя.
  3. Автоматический переход на питание от внешнего источника. Поскольку диод "открывается", когда напряжение на нем достигнет Uоткр , то при Uвнеш питание осуществляется от внутреннего источника, иначе - подключается внешний.

© 2012-2017 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Обратная ветвь вольт - амперной характеристики: На рисунках показаны основные составляющие обратного тока реального кремниевого и германиевого диодов причем масштабы рисунков различны поскольку ток I o германиевом диоде на несколько порядков больше, чем в кремниевом.

Прямая ветвь вольт - амперной характеристики: Величина прямого тока в диоде должна зависеть от напряжения экспоненциально. Однако реальные характеристики отличаются от экспоненты по ряду причин. Ввиду резкой зависимости прямого тока от напряжения ВАХ обычно описывают беря ток I в качестве аргумента:

Отсюда видно, что напряжение U, соответствующее некоторому заданному значению прямого тока I тем больше, чем меньше обратный ток I 0 .У кремниевых диодов, ток I 0 которых значительно меньше, чем у германиевых, начальный участок прямой ветви очень пологий.


На этом участке ток I у кремниевых диодов определяется в основном процессами рекомбинации носителей в переходе, которые при U > 0 преобладают над процессами тепловой генерации. Изменяется также вид вольт - амперной характеристики в зависимости от площади перехода S, с её увеличением растет тепловой ток, а следовательно, и пямая ветвь характеристики идет круче. Существенное влияние на ход зависимости оказывает омическое сопротивление базового слоя. Падение напряжения на нём выражается: , учитывая это падение напряжения зависмость напряжения от тока запишем в виде:

Начальный участок прямой ветви ВАХ во всех диодах отличается от кривой соответствующей идеализированному переходу. В германиевых диодах наклон кривой оределяется в основном значением теплового тока, а в кркмниевых диодах - током рекомбинации. Резкий рост прямого тока у германиевых диодов начинается, как правило, при меньших значениях прямого напряжения.

В начале крутого участка характеристика близка к экспоненциальной; здесь основную роль играет диффузия инжектированных в базу носителей (низкий уровень инжекции). В дальнейшем все больше сказывается влияние объёмного сопротивления базы и других процессов. Характер ВАХ существенно различен для германиевых и кремниевых диодов, для диодов с толстой и тонкой базой и д.р.

Изменение вольт - амперной характиристики с температурой: Для полупроводниковых приборов и, в частности, диодов эта зависимость весьма существенна. На рисунке показаны зависимости ВАХ диодов в зависимости от температуры.

И тепловой I 0 и ток I g пар зарядов в переходе определяющие обратную ветвь характеристики для германиевых и кремниевых диодов соответственно, увеличиваются с температуру по закону:

Обратный ток с увеличением температуры увеличивается на каждые 10 градусов в два раза в Ge диодах и в 2.5 раза в Si диодах.


Для оценки температурной зависимости прямой ветви характеристики используется специальная величина - температурный коэффициент напряжения, показывающий изменение прямого напряжения за счёт изменения температуры на один градус при постоянном значении прямого тока. Температурный коэффициент напряжения для Si и Ge диодов приближённо равен -2 мВ/с.