Понятие об электродвижущей силе и ее источнике. Электродвижущая сила

Электродвижущая сила (сокр. - ЭДС ) - величина, характеризующая источник энергии в электрической цепи, необходимый для поддержания в ней электрического тока . ЭДС численно равна работе по перемещению единичного положительного заряда вдоль замкнутой цепи. Полная ЭДС в цепи постоянного тока равна разности потенциалов на концах разомкнутой цепи. ЭДС индукции создается вихревым электрическое поле , порождаемым переменным магнитным полем . В системе "СИ " измеряется в вольтах.

Потенциальные силы электростатического (или стационарного) поля не могут поддерживать постоянный ток в цепи, т. к. работа этих сил на замкнутом пути равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии - нагреванием проводников. Сторонние силы приводят в движение заряженные частицы внутри источников тока : генераторов , гальванических элементов , аккумуляторов и т. д. Происхождение сторонних сил может быть различным. В генераторах сторонние силы - это силы со стороны вихревого электрического поля , возникающего при изменении магнитного поля со временем, или сила Лоренца, действующая со стороны магнитного поля на электроны в движущемся проводнике; в гальванических элементах и аккумуляторах - это химические силы и т. д. ЭДС определяет силу тока в цепи при заданном её сопротивлении. Измеряется ЭДС, как и напряжение , в вольтах.

Источники

  • Калашников С. Г. Электричество. - 4 изд.. - М.: 1977.
  • Тамм И. Е. Основы теории электричества,. - 9 изд.. - М.: 1976.

И какова ее взаимосвязь с другими параметрами Сразу отметим, несмотря на то, что в повседневной жизни мы все успешно используем электрические приборы, многие законы были выведены опытным путем и приняты за аксиому. Это одна из причин излишнего усложнения определений. К сожалению, даже электродвижущая сила, эта основа электротехники, освещается так, что человеку, незнакомому с электричеством, понять что-либо довольно сложно. Объясним этот вопрос с помощью понятных каждому терминов и примеров.

Направленное движение заряженных частиц в проводнике носит название «электрический ток». Как известно, все предметы нашего материального мира состоят из атомов. Для упрощения понимания можно считать, что каждый атом представлен в виде уменьшенной в миллионы раз в центре расположено ядро, а на разном удалении от него по круговым орбитам вращаются электроны.

Посредством какого-либо внешнего воздействия в проводнике, образующем замкнутый контур, создается электродвижущая сила и возникает Воздействие «выбивает» валентные электроны с их орбит в атомах, поэтому образуются свободные электроны и положительно заряженные ионы.

Электродвижущая сила необходима для того, чтобы «заставить» заряды постоянно двигаться по проводнику и элементам цепи в определенном направлении. Без нее ток практически мгновенно угасает. Разобраться в том, что же такое электродвижущая сила, позволит сравнение электричества с водой. Прямой участок трубы - это проводник. Двумя своими сторонами она выходит в водоемы. До тех пор, пока уровни воды в водоемах равны и отсутствует уклон, жидкость, находящаяся в трубе, неподвижна.

Очевидно, заставить ее двигаться можно тремя способами: создать перепад высот (уклоном или количеством жидкости в водоемах) или принудительно прокачивать. Важный момент: если говорить о перепаде высот то подразумевается напряжение. Для ЭДС же движение «принудительно», так как сторонние силы, оказывающие воздействие, непотенциальны.

Любой источник электрического тока обладает ЭДС - той самой силой, которая поддерживает движение заряженных частиц (в приведенной аналогии заставляет воду двигаться). Измеряется в вольтах. Название говорит само за себя: ЭДС характеризует работу приложенных к участку цепи сторонних сил, выполняющих перемещение каждого единичного заряда от одного полюса к другому (между клеммами). Она численно равна отношению работы приложенных сторонних сил к величине перемещаемого заряда.

Косвенно необходимость в источнике ЭДС можно вывести из закона сохранения энергии и свойств проводника с током. В замкнутой цепи работа поля по перемещению зарядов равна нулю. Однако проводник нагревается (причем тем сильнее, чем больший ток по нему проходит в единицу времени). Вывод: в цепи должна присутствовать доля сторонней энергии. Указанные сторонние силы - это магнитное поле в генераторах, постоянно возбуждающее электроны; энергия химических реакций в батареях.

Электродвижущая сила индукции была впервые обнаружена экспериментальным путем в 1831 году Он установил, что в проводнике, пронизываемом линиями напряженности изменяющегося магнитного поля, возникает электрический ток. Воздействие поля сообщает внешним электронам в атомах недостающую им энергию, в результате чего они отрываются и начинают двигаться (появляется ток). Конечно, непосредственного движения частиц не существует (как тут не вспомнить об относительности аксиом электротехники). Скорее, имеет место обмен частицами между ближайшими атомами.

Развиваемая электродвижущая сила - это внутренняя характеристика любого источника питания.

Электродви́жущая си́ла (эдс; ε) - величина, характеризующая источник энергии неэлектростатической природы в электрической цепи, необходимый для поддержания в ней электрического тока . Потенциальные силы электростатического (или стационарного) поля не могут поддерживать постоянный ток в цепи. Для поддержания в цепи непрерывного тока необходим , или генератор электрического тока, обеспечивающий действие сторонних сил . Сторонние силы имеют неэлектростатическое происхождение и действуют внутри источников тока, (генераторов, гальванических элементов, аккумуляторов и т. д.), создавая разность потенциалов между концами остальной части цепи и приводя в движение заряженные частицы внутри источников тока.

Так как при перемещении электрического заряда по замкнутой цепи работа, совершаемая электростатическими силами, равна нулю, то заряд перемещается лишь под действием сторонних сил. Поэтому электродвижущая сила источника тока будет численно равна работе сторонних сил А в источниках постоянного или переменного тока по перемещению единичного положительного заряда Q вдоль замкнутой цепи. ЭДС, действующая в цепи, определяется как циркуляция вектора напряженности сторонних сил.

Происхождение сторонних сил может быть различным. В качестве меры электродвижущей силы, действующей в генераторе, принимают разность потенциалов, создаваемую на зажимах разомкнутого генератора. Один и тот же источник тока, в зависимости от силы отбираемого тока, может обладать различным напряжением на электродах. Источники тока - аккумуляторы, термоэлементы, электрические генераторы – одновременно замыкают электрическую цепь. Ток течет по внешней части цепи - проводнику и по внутренней - источнику тока. Источник тока имеет два полюса: положительный (с более высоким потенциалом) и отрицательный (с более низким потенциалом). Сторонние силы, природа которых может быть различной (химической, механической, тепловой), разделяют заряды в источнике тока. Полная ЭДС в цепи постоянного тока (максимальное из этих напряжений, существующее при разомкнутой цепи), равна разности потенциалов на концах разомкнутой цепи и показывает ЭДС источника.

ЭДС определяет силу тока в цепи при заданном ее сопротивлении (Ома закон). Измеряется ЭДС, как и напряжение, в вольтах . Для поддержания непрерывного электрического тока используются генераторы, являющиеся источником электродвижущей силы. В генераторах сторонние силы - это силы со стороны вихревого электрического поля, возникающего при изменении магнитного поля со временем, или Лоренца сила , действующая со стороны магнитного поля на электроны в движущемся проводнике; в гальванических элементах и аккумуляторах - это химические силы.


Любой источник тока характеризуется электродвижущей силой, или ЭДС. Так, на круглой батарейке для карманного фонарика написано: 1,5 В. Что это значит?
В § 2.3 мы установили, что для длительного существования электрического тока в проводнике на его концах должна поддерживаться постоянная разность потенциалов. Как же это осуществить?
к
F,
к
1

а)
Рис. 2.47
F,
б)
Если взять два заряженных тела (например, два шара) А и В, несущих заряды противоположного знака +q и -q, и соединить их проводником, то в нем возникнет электрическое поле и потечет ток (рис. 2.47, а). В процессе прохождения тока оба тела будут разряжаться (электроны с шара В будут переходить на шар А), разность потенциалов между ними начнет падать; вскоре она станет равной нулю, и ток в проводнике АВ прекратится.
Сторонние силы
Для того чтобы ток в проводнике АВ не прекращался, а был постоянным, надо шары Am В все время подзаряжать, чтобы обеспечить постоянную разность потенциалов между ними. Для этого необходимо иметь устройство (оно называется источником тока), которое непрерывно перемещало бы заряды в направлении, противоположном направлению кулоновских сил, действующих на эти заряды со стороны электрического поля заряженных шаров. В таком устройстве на заряды должны действовать силы, отличные от кулоновских (рис. 2.47, б). Одни лишь электростатические (кулоновские) силы не могут поддерживать постоянный ток в цепи.
Любые силы, действующие на электрически заряженные частицы, за исключением электростатических (кулоновских) сил, называются сторонними силами.
Вывод о необходимости действия сторонних сил для поддержания постоянного тока в электрической цепи станет еще очевиднее, если обратиться к закону сохранения энергии.
Мы уже говорили (см. § 2.3), что стационарное электрическое поле, связанное с проводником с током, является потенциальным. Работа этого поля при перемещении заряженных частиц вдоль замкнутой цепи равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии - проводники нагреваются. Следовательно, в любой цепи должен быть какой-то источник энергии, поставляющий ее в цепь. В нем, помимо кулоновских сил, обязательно должны действовать сторонние непотенциальные силы, работа которых вдоль замкнутой цепи отлична от нуля. Именно за счет работы этих сил заряженные частицы приобретают энергию и отдают ее затем при движении в проводниках электрической цепи.
Сторонние силы приводят в движение заряженные частицы внутри источников тока: в генераторе на электростанции, в гальваническом элементе, аккумуляторе и т. д. В результате на клеммах источника появляются заряды противоположного знака, и между клеммами создается определенная разность потенциалов. При замыкании цепи начинает действовать механизм образования поверхностных зарядов, создающих электрическое поле во всей цепи (см. § 2.3).
Внутри источника заряды движутся под действием сторонних сил против сил электростатического поля (положитель-ные - от отрицательно заряженного электрода к положитель- но заряженному, а отрицательные - наоборот), а во всей ос-тальной части цепи их приводит в движение стационарное электрическое поле (см. рис. 2.47, б).
Механическая аналогия электрической цепи

Для лучшего понимания значения источника тока в замкнутой электрической цепи рассмотрим следующую механическую анало-гию. На рисунке 2.48 изображен замкнутый контур, состоящий из труб и насоса. Чтобы исключить действие силы тяжести, предположим, что контур расположен горизонтально. Весь контур заполнен жидкостью, например водой. На любом участке горизонтальной трубы жидкость течет за счет разности давлений на концах участка. Жидкость перемещается в сторону уменьшения давления. Но сила давления, появляющаяся вследствие сжатия жидкости, - это вид сил упругости, которые являются потенциальными. Поэтому работа этих сил на замкнутом пути, как и работа кулоновских сил, равна нулю. Следовательно, одни эти силы не могут вызвать длительную циркуляцию жидкости в замкнутом контуре, так как течение жидкости сопровождается потерями энергии вследствие действия сил трения.
Для циркуляции воды необходим насос - аналог источника тока. Крыльчатка этого насоса действует на частички жидкости и создает постоянную разность давлений (напор) на входе и выходе насоса, благодаря чему жидкость и течет по трубам. Роль сторонних сил в насосе играет сила, действующая на воду со стороны вращающейся крыльчатки. Внутри насоса вода течет от участков с меньшим давлением к участкам с большим давлением.
Природа сторонних сил
Природа сторонних сил может быть различной. Например, в аккумуляторе или гальваническом элементе эта сила возникает благодаря химическим реакциям на границе соприкосновения электродов с раствором электролита (см. § 2.12). В фо- тоэлементе эти силы возникают благодаря действию света на вещество. В генераторах электростанций сторонняя сила - это может быть сила, действующая со стороны магнитного поля на электроны в движущемся проводнике (подробнее об этом будет говориться в главе 4).
Электродвижущая сила
Физическая величина, характеризующая действие сторонних сил в источниках тока, называется электродвижущей силой (сокращенно ЭДС). Электродвижущая сила в замкнутом проводящем контуре равна отношению работы сторонних сил по перемещению заряда вдоль контура к этому заряду.
Обозначим ЭДС буквой работу сторонних сил - Аст, а пе-реносимый заряд - q, тогда из определения ЭДС следует, что
в- - . (2.11.1)
q
Из этой формулы видно, что единицей ЭДС, как и напряжения, является вольт.
Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. Электродвижущая сила гальванического элемента, например, численно равна работе сторонних сил при перемещении единичного положительного заряда внутри элемента от отрицательного его полюса к положительному.

fg 6)
Рис. 2.49
збхода?>0 a)
Так как электродвижущая сила представляет собой удель-ную работу, то она является скалярной величиной, которая может быть как положительной, так и отрицательной. Знак ЭДС определяется в зависимости от произвольно выбранного направления обхода того участка электрической цепи, на котором включен данный источник тока. Если внутри источника тока обход совершается от отрицательного полюса к положительному, то ЭДС положительная (? > 0) (рис. 2.49, а). Сторонние силы внутри источника совершают при этом положительную работу. Если обход совершается от положительного полюса к отрицательному, то ЭДС отрицательная (ё Теперь вы знаете, что такое ЭДС. Если на батарейке написано 1,5 В, то это означает, что сторонние силы (химические в данном случае) совершают работу 1,5 Дж при перемещении заряда в 1 Кл от одного полюса батарейки к другому. Постоянный ток не может существовать в замкнутой цепи, если в ней не действуют сторонние силы, т. е. нет источника ЭДС.

Как отмечалось, для поддержания в цепи электрического тока необходимо, чтобы на концах ее (рис. 2) существовала постоянная разность потенциалов . Пусть в начальный момент времени , тогда перенос положительного заряда q из точки А в точку В приведет к уменьшению разности потенциалов между ними. Для сохранения постоянной разности потенциалов необходимо перенести точно такой же заряд из B в A. Если в направлении А В заряды движутся под действием сил электростатического поля, то в направлении В А перемещение зарядов происходит против сил электростатического поля, т.е. под действием сил неэлектростатической природы, так называемых сторонних сил. Это условие выполняется в источнике тока, который поддерживает движение электрических зарядов. В большинстве источников тока движутся только электроны, в гальванических элементах - ионы обоих знаков.

Источники электрического тока могут быть различны по своей конструкции, но в любом из них совершается работа по разделению положительно и отрицательно заряженных частиц. Разделение зарядов происходит под действием сторонних сил . Сторонние силы действуют лишь внутри источника тока и могут быть обусловлены химическими процессами (аккумуляторы, гальванические элементы), действием света (фотоэлементы), изменяющимися магнитными полями (генераторы) и т.д.

Любой источник тока характеризуют электродвижущей силой - ЭДС.

Электродвижущей силой источника тока называют физическую скалярную величину, равную работе сторонних сил по перемещению единичного положительного заряда вдоль замкнутой цепи

Единицей электродвижущей силы в СИ является вольт (В).

ЭДС является энергетической характеристикой источника тока.

В источнике тока в процессе работы по разделению заряженных частиц происходит превращение механической, световой, внутренней и т.п. энергии в электрическую. Разделенные частицы накапливаются на полюсах источника тока (места, к которым с помощью клемм или зажимов подсоединяют потребители). Один полюс источника тока заряжается положительно, другой - отрицательно. Между полюсами источника тока создается электростатическое поле. Если полюса источника тока соединить проводником, то в такой электрической цепи возникает электрический ток. При этом характер поля меняется, оно перестает быть электростатическим.

На рисунке 3 схематично в виде сферического проводника изображена отрицательная клемма источника тока и сечение присоединенного к ней конца металлического провода. Пунктиром показаны некоторые линии напряженности поля клеммы до внесения в него провода, а стрелками - силы, действующие на свободные электроны провода, находящиеся в точках, помеченных цифрами. Электроны в различных точках поперечного сечения провода под действием кулоновских сил поля клеммы приобретают движение не только вдоль оси провода. Например, электрон, находящийся в точке 1, оказывается вовлеченным в "токовое" движение. Но вблизи точек 2, 3, 4, 5 электроны имеют возможность скапливаться на поверхности провода. Причем поверхностное распределение электронов по длине провода не будет равномерным. Следовательно, подключение провода к клемме источника тока приведет к тому, что некоторые электроны начнут двигаться вдоль провода, а часть электронов будет скапливаться на поверхности.

Неравномерное распределение электронов на его поверхности обеспечивает неэквипотенциальность этой поверхности, наличие составляющих напряженности электрического поля, направленных вдоль поверхности проводника. Это поле перераспределенных электронов самого проводника и обеспечивает упорядоченное движение других электронов. Если распределение электронов по поверхности проводника с течением времени не изменяется, то такое поле называют стационарным электрическим полем . Таким образом, главную роль в создании стационарного электрического поля играют заряды, находящиеся на полюсах источника тока. При замыкании электрической цепи взаимодействие именно этих зарядов со свободными зарядами проводника приводит к появлению на всей поверхности проводника нескомпенсированных поверхностных зарядов. Именно эти заряды создают стационарное электрическое поле внутри проводника по всей его длине. Это поле внутри проводника однородное, и линии напряженности направлены вдоль оси проводника (рис. 4). Процесс установления электрического поля вдоль проводника происходит со скоростью c ~ 3·10 8 м/с.

Как и электростатическое поле, оно потенциально. Но между этими полями имеются существенные отличия:

  1. электростатическое поле - поле неподвижных зарядов. Источником стационарного электрического поля являются движущиеся заряды, причем общее число зарядов и картина их распределения в данном пространстве с течением времени не изменяются;
  2. электростатическое поле существует вне проводника. Напряженность электростатического поля всегда равна 0 внутри объема проводника, а в каждой точке внешней поверхности проводника направлена перпендикулярно к этой поверхности. Стационарное электрическое поле существует и вне и внутри проводника. Напряженность стационарного электрического поля не равна нулю внутри объема проводника, а на поверхности и внутри объема имеются составляющие напряженности, не перпендикулярные к поверхности проводника;
  3. потенциалы разных точек проводника, по которому проходит постоянный ток, разные (поверхность и объем проводника не эквипотенциальны). Потенциалы всех точек поверхности проводника, находящегося в электростатическом поле, одинаковы (поверхность и объем проводника эквипотенциальны);
  4. электростатическое поле не сопровождается появлением магнитного поля, а стационарное электрическое поле сопровождается его появлением и неразрывно с ним связано.