Виды геометрических моделей, их свойства, параметризация моделей. Геометрическая модель Модель – такое представление данных, которое наиболее адекватно отражает свойства реального объекта, существенные для процесса проектирования

Введение в трехмерное моделирование

Современные 3D – системы проектирования позволяют создавать трехмерные модели самых сложных деталей и сборок. Используя наглядные методы формирования объемных элементов, конструктор оперирует простыми и естественными понятиями основание, отверстие, фаска, ребро жесткости, оболочка и т. д. При этом процесс конструирования может воспроизводить технологический процесс изготовления детали. После создания 3D – модели изделия конструктор может получить его чертеж без рутинного создания видов средствами плоского черчения.

Геометрические модели

При решении большинства задач в области автоматизированного конструирования и технологической подготовки производства необходимо учитывать форму проектируемого изделия. Из этого следует, что геометрическое моделирование, понимаемое как процесс воспроизведения пространственных образов изделий и исследования характеристик изделий по этим образам, является ядром автоматизированного проектирования. Информация о геометрических характеристиках объекта используется не только для получения графического изображения, но и для расчета различных характеристик изделий, технологических параметров его изготовления и т. д. На рис. 1. показано, какие задачи решаются с помощью геометрической модели в системе автоматизированного проектирования (САПР). Под геометрическими моделями понимаются модели, содержащие информацию о форме и геометрии изделия, технологическую, функциональную и вспомогательную информацию.

Рис. 1. Задачи, решаемые с помощью геометрической модели

Развитие методов и средств геометрического моделирования определило изменение ориентации графических подсистем САПР. В САПР можно выделить два вида построения графических подсистем:

1. Ориентированные на чертеж.

2. Ориентированные на объект.

Системы первого поколения, ориентированные на чертеж, обеспечивают необходимые условия для создания конструкторской документации. В таких системах создается не объект (деталь, узел), а графический документ.

Эволюция графических подсистем САПР привела к тому, что системы, ориентированные на чертеж, постепенно утрачивают свое значение (особенно в области машиностроения) и все большее распространение получают системы, ориентированные на объект. На рис. 2 показана эволюция ориентации графических подсистем САПР за последние десятилетия.

Рис. 2. Ядро графической подсистемы САПР:

а – чертеж; б – данные чертежа; в – трехмерная геометрическая модель

На начальных этапах разработки и внедрения САПР основным документом обмена между различными подсистемами был чертеж (рис. 2а). Следующее поколение графических подсистем использовало в качестве данных, через которые обеспечивался обмен с функциональными подсистемами САПР, данные чертежа (рис. 2б). Это позволило перейти на безбумажную технологию проектирования. В графических подсистемах, интегрированных САПР, ядром являются трехмерные геометрические модели проектируемых изделий (рис. 2в). При этом различные двумерные изображения трехмерной модели формируются в таких подсистемах автоматически.

При решении большинства задач в области автоматизированного конструирования (К) и технологической подготовки производства (ТПП) надо иметь модель объекта проектирования.

Под моделью объекта понимают его некоторое абстрактное представление, удовлетворяющее условию адекватности этому объекту и позволяющее осуществлять его представление и обработку с помощью компьютера.

Т.о. модель – набор данных, отображающих свойства объекта и совокупность отношений между этими данными.

В модель объекта ПР в зависимости от характера ее исполнения может входить ряд разнообразных характеристик и параметров. Чаще всего модели объектов содержат данные о форме объекта, его размерах, допусках, применяемых материалах, механических, электрических, термодинамических и других характеристиках, способах обработки, стоимости, а также о микрогеометрии (шероховатость, отклонения формы, размеров).

Для обработки модели в графических системах САПР существенным является не весь объем информации об объекте, а та часть, которая определяет его геометрию, т.е. формы, размеры, пространственное размещение объектов.

Описание объекта с точки зрения его геометрии называется геометрической моделью объекта .

Но геометрическая модель может в себя включать еще и некоторую технологическую и вспомогательную информацию.

Информация о геометрических характеристиках объекта используется не только для получения графического изображения, но и для расчетов различных характеристик объекта (например, по МКЭ), для подготовки программ для станков с ЧПУ.

В традиционном процессе конструирования обмен информацией осуществляется на основе эскизных и рабочих чертежей с использованием нормативно-справочной и технической документации. В САПР этот обмен реализуется на основе внутримашинного представления объекта.

Под геометрическим моделированием понимают весь многоступенчатый процесс – от вербального (словесного) описания объекта в соответствии с поставленной задачей до получения внутримашинного представления объекта.

В системах геометрического моделирования могут обрабатываться 2-мерные и 3-хмерные объекты, которые в свою очередь могут быть аналитически описываемыми и неописываемыми. Аналитически неописываемые геометрические элементы, такие как кривые и поверхности произвольной формы, используются преимущественно при описании объектов в автомобиле-, самолето- и судостроении.


Основные виды ГМ

2-мерные модели , которые позволяют формировать и изменять чертежи, были 1-ми моделями, нашедшими применение. Такое моделирование часто применяется и до сих пор, т.к. оно намного дешевле (в отношении алгоритмов, использования) и вполне устраивает промышленные организации при решении разнообразных задач.

В большинстве 2-мерных систем геометрического моделирования описание объекта осуществляется в интерактивном режиме в соответствии с алгоритмами, аналогичными алгоритмам традиционного метода конструирования. Расширением таких систем является то, что контурам или плоским поверхностям ставится в соответствие постоянная или переменная глубина изображения. Системы, работающие по такому принципу, называется 2,5-мерными. Они позволяют получать на чертежах аксонометрические проекции объектов.

Но 2-мерное представление часто не удобно для достаточно сложных изделий. При традиционных способах конструирования (без САПР) пользуются чертежами, где изделие может быть представлено несколькими видами. Если изделие очень сложное, его можно представить в виде макета. 3-хмерная модель служит для того, чтобы создать виртуальное представление изделия во всех 3-х измерениях.

Различают 3 вида 3-хмерных моделей:

· каркасные (проволочные)

· поверхностные (полигональные)

· объемные (модели сплошных тел).

· Исторически 1-ми явились каркасные модели . В них хранятся только координаты вершин (x,y,z ) и соединяющие их ребра.

На рисунке видно, как куб может быть воспринят неоднозначно.


Т.к. известны только ребра и вершины, возможны различные интерпретации одной модели. Каркасная модель проста, но с ее помощью можно представить в пространстве только ограниченный класс деталей, в которых аппроксимирующие поверхности являются плоскостями. На основе каркасной модели можно получать проекции. Но невозможно автоматически удалять невидимые линии и получать различные сечения.

· Поверхностные модели позволяют описывать достаточно сложные поверхности. Поэтому они часто соответствует нуждам промышленности (самолето-, судо-, автомобилестроение) при описании сложных форм и работе с ними.

При построении поверхностной модели предполагается, что объекты ограничены поверхностями, которые отделяют их от окружающей среды. Поверхность объекта тоже становится ограниченной контурами, но эти контуру являются результатом 2-х касающихся или пересекающихся поверхностей. Вершины объекта могут быть заданы пересечением поверхностей, множеством точек, удовлетворяющих какому-то геометрическому свойству, в соответствии с которым определяется контур.

Возможны различные виды задания поверхностей (плоскости, поверхности вращения, линейчатые поверхности). Для сложных поверхностей используются различные математические модели аппроксимации поверхностей (методы Кунса, Безье, Эрмита, В-сплайна). Они позволяют изменять характер поверхности с помощью параметров, смысл которых доступен пользователю, не имеющему специальной математической подготовки.


Аппроксимация поверхностей общего вида плоскими гранями дает преимущество: для обработки таких поверхностей используются простые математические методы. Недостаток: сохранение формы и размеров объекта зависит от числа граней, используемых для аппроксимаций. Чем > число граней, тем < отклонение от действительной формы объекта. Но с увеличением числа граней одновременно увеличивается и объем информации для внутримашинного представления. Вследствие этого увеличивается как время на работу с моделью объекта, так и объем памяти для хранения модели.

· Если для модели объекта существенно разграничение точек на внутренние и внешние, то говорят об объемных моделях . Для получения таких моделей сначала определяются поверхности, окружающие объект, а затем они собираются в объемы.

В настоящее время известны следующие способы построения объемных моделей:

· В граничных моделях объем определяется как совокупность ограничивающих его поверхностей.

Структура может быть усложнена внесением действий переноса, поворота, масштабирования.

Достоинства:

¾ гарантия генерации правильной модели,

¾ большие возможности моделирования форм,

¾ быстрый и эффективный доступ к геометрической информации (например, для прорисовки).

Недостатки :

¾ больший объем исходных данных, чем при CSG способе,

¾ модель логически < устойчива, чем при CSG, т.е. возможны противоречивые конструкции,

¾ сложности построения вариаций форм.

· В CSG-моделях объект определяется комбинацией элементарных объемов с использованием геометрических операций (объединение, пересечение, разность).

Под элементарным объемом понимается множество точек в пространстве.

Моделью такой геометрической структуры является древовидная структура. Узлы (нетерминальные вершины) – операции, а листья – элементарные объемы.

Достоинства:

¾ концептуальная простота,

¾ малый объем памяти,

¾ непротиворечивость конструкции,

¾ возможность усложнения модели,

¾ простота представления частей и сечений.

Недостатки:

¾ ограничение рамками булевых операций,

¾ вычислительноемкие алгоритмы,

¾ невозможность использовать параметрически описанных поверхностей,

¾ сложность при работе с функциями > чем 2-го порядка.

· Ячеечный метод. Ограниченный участок пространства, охватывающий весь моделируемый объект, считается разбитым на большое число дискретных кубических ячеек (обычно единичного размера).

Моделирующая система должна просто записать информацию о принадлежности каждого куба объекту.

Структура данных представляется 3-хмерной матрицей, в которой каждый элемент соответствует пространственной ячейке.

Достоинства:

¾ простота.

Недостатки:

¾ большой объем памяти.

Для преодоления этого недостатка используют принцип разбиения ячеек на подъячейки в особо сложных частях объекта и на границе.

Объемная модель объекта, полученная любым способом, является корректной, т.е. в данной модели нет противоречий между геометрическими элементами, например, отрезок не может состоять из одной точки.

Каркасное представление м.б. использовано не при моделировании, а при отражении моделей (объемных или поверхностных) как один из методов визуализации.

Результатом геометрического моделирования некоторого объекта является математическая модель его геометрии. Математическая модель позволяет графически отобразить моделируемый объект, получить его геометрические характеристики, выполнить исследование многих физических свойств объекта путем постановки численных экспериментов, подготовить производство и, наконец, изготовить объект.

Для того чтобы увидеть, как выглядит объект, нужно смоделировать поток падающих и возвращающихся от его поверхностей лучей света. При этом граням модели можно придать необходимый цвет, прозрачность, фактуру и другие физические свойства. Модель можно осветить с разных сторон светом различного цвета и интенсивности.

Геометрическая модель позволяет определить массово-центровочные и инерционные характеристики проектируемого объекта, выполнить измерения длин и углов его элементов. Она дает возможность произвести расчет размерных цепей и определить собираемость проектируемого объекта. Если объект представляет собой механизм, то на модели можно проверить его работоспособность и выполнить расчет кинематических характеристик.

Используя геометрическую модель, можно поставить численный эксперимент по определению напряженно-деформированного состояния, частот и форм собственных колебаний, устойчивости элементов конструкции, тепловых, оптических и других свойств объекта. Для этого нужно дополнить геометрическую модель физическими свойствами, смоделировать внешние условия ее работы и, используя физические законы, выполнить соответствующий расчет.

По геометрической модели можно вычислить траекторию режущего инструмента для механической обработки объекта. При выбранной технологии изготовления объекта геометрическая модель позволяет спроектировать оснастку и выполнить подготовку производства, а также проверить саму возможность изготовления объекта данным способом и качество этого изготовления. Кроме того, возможна графическая имитация процесса изготовления. Но для того, чтобы изготовить объект, кроме геометрической информации нужна информация о технологическом процессе, производственном оборудовании и многом другом, связанном с производством.

Многие из перечисленных проблем образуют самостоятельные разделы прикладной науки и по своей сложности не уступают, а в большинстве случаев и превосходят проблему создания геометрической модели. Геометрическая модель является отправной точкой для дальнейших действий. При построении геометрической модели мы не использовали физические законы, радиус-вектор каждой точки границы раздела внешней и внутренней частей моделируемого объекта является известным, поэтому при построении геометрической модели нам приходится составлять и решать алгебраические уравнения.

Задачи, в которых используются физические законы, приводят к дифференциальным и интегральным уравнениям, решение которых сложнее решения алгебраических уравнений.

В данной главе остановимся на выполнении расчетов, не связанных с физическими процессами. Мы рассмотрим вычисление чисто геометрических характеристик тел и их плоских сечений: площади поверхности, объема, центра масс, моментов инерции и ориентации главных осей инерции. Эти расчеты не требуют привлечения дополнительной информации. Кроме этого, мы рассмотрим проблемы численного интегрирования, которые приходится решать при определении геометрических характеристик.

Определение площади, центра масс и моментов инерции плоского сечения тела приводит к вычислению интегралов по площади сечения. Для плоских сечений мы располагаем информацией об их границах. Интегралы по площади плоского сечения мы сведем к криволинейным интегралам, которые в свою очередь сводятся к определенным интегралам. Определение площади поверхности, объема, центра масс, моментов инерции тела приводит к вычислению поверхностных и объемных интегралов. Мы будем опираться на представление тела с помощью границ , т. е. на описание тела совокупностью ограничивающих его поверхностей и топологическую информацию о взаимном соседстве этих поверхностей. Мы сведем интегралы по объему тела к поверхностным интегралам по поверхностям граней тела, которые в свою очередь сводятся к двойным интегралам. В общем случае область интегрирования представляет собой связную двухмерную область. Вычисление двойных интегралов численными методами можно выполнить для областей простых типов - четырехугольной или треугольной формы. В связи с этим в конце главы рассмотрены методы вычисления определенных интегралов и двойных интегралов по четырехугольным и треугольным областям. Методы разбивки областей определения параметров поверхностей на совокупности треугольных подобластей рассмотрены в следующей главе.

В начале главы рассмотрим сведение интегралов по площади к криволинейным интегралам и сведение объемных интегралов к поверхностным интегралам. На этом будут базироваться вычисления геометрических характеристик моделей.


Среди всего разнообразия моделей, применяемых в науке и технике, самое широкое распространение получили математические модели. Под математическими моделями обычно понимаются различные математические конструкции, построенные на основе современной вычислительной техники, описывающие и воспроизводящие взаимосвязи между параметрами моделируемого объекта. Для установления связи между числом и формой существуют различные способы пространственно-числового кодирования. Простота и доступность решения практических задач зависит от удачно выбранной системы отсчета. Геометрические модели классифицируют на предметные (чертежи, карты, фотографии, макеты, телевизионные изображения и т.п.), расчетные и познавательные. Предметные модели тесно связаны с визуальным наблюдением. Информация, получаемая с предметных моделей, включает в себя сведения о форме и размерах объекта, о его расположении относительно других. Чертежи машин, технических приспособлений и их деталей выполняют с соблюдением ряда условных обозначений, особых правил и определенного масштаба. Чертежи могут быть монтажными, общего вида, сборочными, табличными, габаритными, наружных видов, пооперационными и т.д. В зависимости от стадии проектирования чертежи различают на чертежи технического предложения, эскизного и технического проектов, рабочие чертежи. Чертежи также различают по отраслям производства: машиностроительные, приборостроительные, строительные, горно-геологические, топографические и т.п. Чертежи земной поверхности называются картами. Чертежи различают по методу изображений: ортогональный чертеж, аксонометрия, перспектива, проекции с числовыми отметками, аффинные проекции, стереографические проекции, кинеперспектива и т.п. Геометрические модели существенно различаются по способу исполнения: чертежи подлинники, оригиналы, копии, рисунки, картины, фотографии, киноленты, рентгенограммы, кардиограммы, макеты, модели, скульптуры и т.д. Среди геометрических моделей можно выделить плоские и объемные модели. Графические построения могут служить для получения численных решений различных задач. При вычислении алгебраических выражений числа изображаются направленными отрезками. Для нахождения разности или суммы чисел соответствующие им отрезки откладываются на прямой линии. Умножение и деление осуществляется построением пропорциональных отрезков, которые отсекаются на сторонах угла прямыми параллельными линиями. Комбинация действий умножения и сложения позволяет вычислять суммы произведений и взвешенное среднее. Графическое возведение в целую степень заключается в последовательном повторении умножения. Графическим решением уравнений является значение абсциссы точки пересечения кривых. Графически можно вычислять определенный интеграл, строить график производной, т.е. дифференцировать и интегрировать, а также решать уравнения. Геометрические модели для графических вычислений необходимо отличать от номограмм и расчетных геометрических моделей (РГМ). Графические вычисления требуют каждый раз последовательности построений. Номограммы и РГМ представляют собой геометрические изображения функциональных зависимостей и не требуют для нахождения численных значений новых построений. Номограммы и РГМ используются для вычислений и исследований функциональных зависимостей. Вычисления на РГМ и номограммах заменяется считыванием ответов с помощью элементарных операций, указанных в ключе номограммы. Основными элементами номограмм являются шкалы и бинарные поля. Номограммы подразделяются на элементарные и составные номограммы. Номограммы также различают по операции в ключе. Принципиальное различие РГМ и номограммы состоит в том, что для построения РГМ используются геометрические методы, а для построения номограмм – аналитические методы.

Геометрические модели, изображающие отношения между элементами множества называются графами. Графы – модели порядка и образа действия. На этих моделях нет расстояний, углов, безразлично соединение точек прямой или кривой. В графах различаются только вершины, ребра и дуги. Впервые графы использовались в ходе решения головоломок. В настоящее время графы эффективно используются в теории планирования и управления, теории расписаний, социологии, биологии, в решении вероятностных и комбинаторных задач и т.п. Графическая модель зависимости называется графиком. Графики функций можно строить по заданной его части или по графику другой функции, используя геометрические преобразования. Графическое изображение, наглядно показывающее соотношение каких-либо величин, является диаграммой. Например, диаграмма состояния (фазовая диаграмма), графически изображает соотношение между параметрами состояния термодинамически равновесной системы. Столбчатая диаграмма, представляющая собой совокупность смежных прямоугольников, построенных на одной прямой и представляющих распределение каких-либо величин по количественному признаку, называется гистограммой.

Особенно интересным является использование геометрии для оценки теоретического и практического значения математических рассуждений и анализа сущности математического формализма.Отметим, общепринятые средства передачи приобретаемого опыта, знаний и восприятия (речь, письменность, живопись и т. д.) являются заведомо гомоморфной проекционной моделью реальной действительности. Понятия о проекционном схематизме и операции проектирования относятся к начертательной геометрии и имеют своё обобщение в теории геометрического моделирования.С геометрической точки зрения, любой объект может иметь множество проекций, различающихся как положением центра проектирования и картины, так и их размерностью, т.е. реальные явления природы и общественных отношений допускают различные описания, отличающиеся друг от друга степенью достоверности и совершенства. Основой научного исследования и источником всякой научной теории является наблюдение и эксперимент, который всегда имеет целью выявления некоторой закономерности. Приступая к изучению какого-либо конкретного явления, специалист, прежде всего, собирает факты, т.е. отмечает такие ситуации, которые поддаются экспериментальному наблюдению и регистрации с помощью органов чувств или специальных приборов. Экспериментальное наблюдение всегда носит проекционный характер, так как множеством фактов, неразличимых в данной ситуации (принадлежащих одному проектирующему образу) присваивается одно и то же название (проекция). Пространство, отнесенное к изучаемому явлению, называется операционным, а пространство, отнесенное к наблюдателю, – картинным. Размерность картинного пространства определяется возможностями и средствами наблюдения, т.е. вольно или невольно, сознательно и совершенно стихийно устанавливается экспериментатором, но всегда меньше размерности исходного пространства, которому принадлежат исследуемые объекты, обусловленные разнообразными связями, параметрами, причинами. Размерность исходного пространства очень часто остается не выявленной, т.к. существуют не выявленные параметры, которые влияют на исследуемый объект, но не известны исследователю или не могут быть учтены. Проекционный характер любого экспериментального наблюдения объясняется, прежде всего, невозможностью повторения событий во времени; это один из регулярно возникающих и неуправляемых параметров, независящих от воли экспериментатора. В некоторых случаях этот параметр оказывается несущественным, а в других случаях играет очень важную роль. Отсюда видно, какое большое и принципиальное значение имеют геометрические методы и аналогии при построении, оценке или проверке научных теорий. Действительно, каждая научная теория основывается на экспериментальных наблюдениях, а результаты этих наблюдений представляют собой – как сказано – проекцию изучаемого объекта. При этом реальный процесс может быть описан несколькими различными моделями. С точки зрения геометрии это соответствует выбору различного аппарата проектирования. Он различает объекты по одним признакам и не различает их по другим. Одной из наиболее важных и актуальных задач является выявление условий, при которых происходит сохранение или, наоборот, распадение детерминизма модели, полученной в результате эксперимента или исследования, так как практически всегда важно знать, насколько эффективна и пригодна данная гомоморфная модель. Решение поставленных задач геометрическими средствами оказалось уместным и естественным в связи с использованием указанных выше проекционных воззрений. Все эти обстоятельства послужили основанием для использования аналогий между различными видами проекционных геометрических моделей, полученных при гомоморфном моделировании, и моделями, возникающими в результате исследования. Совершенной модели соответствуют закономерности, устанавливающие однозначное или многозначное, но, во всяком случае, вполне определенное соответствие между некоторыми исходными и искомыми параметрами, описывающими изучаемое явление. В этом случае действует эффект схематизации, преднамеренное сокращение размерности картинного пространства, т.е. отказ от учета ряда существенных параметров, позволяющих экономить средства и избежать ошибок. Исследователь постоянно имеет дело с такими случаями, когда интуитивно незакономерные явления отличаются от закономерных явлений, где существует какая-то связь между параметрами, характеризующими исследуемый процесс, но пока не известен механизм действия этой закономерности, для чего в последствии ставится эксперимент. В геометрии этому факту соответствует различие между распавшейся моделью и совершенной моделью с неявно выраженным алгоритмом. Задачей исследователя в последнем случае является выявление алгоритма в проекции, элементов входа и элементов выхода. Закономерность, полученная в результате обработки и анализа некоторой выборки экспериментальных данных, может оказаться недостоверной из-за неверно сделанной выборки действующих факторов, подвергнутых исследованию, так как она оказывается лишь вырожденным вариантом более общей и более сложной закономерности. Отсюда возникает необходимость в повторных или натурных испытаниях. В геометрическом моделировании этому факту – получению неверного результата – соответствует распространение алгоритма для некоторого подпространства элементов входа, на все элементы входа (т.е. нестабильность алгоритма).

Простейшим реальным объектом, который удобно описывать и моделировать с помощью геометрических представлений, является совокупность всех наблюдаемых физических тел, вещей и предметов. Эта совокупность заполняет физическое пространство, которое можно рассматривать как исходный объект, подлежащий изучению, геометрическое пространство – как его математическую модель. Физические связи и отношения между реальными объектами заменяются позиционными и метрическими отношениями геометрических образов. Описание условий реальной задачи в геометрических терминах является очень ответственным и самым сложным этапом решения задачи, требующим сложной цепи умозаключений и высокого уровня абстракции, в результате которого реальное событие облекается в простую геометрическую конструкцию. Особое значение имеют теоретические геометрические модели. В аналитической геометрии геометрические образы исследуются средствами алгебры на основе метода координат. В проективной геометрии изучаются проективные преобразования и неизменные свойства фигур, независящие от них. В начертательной геометрии изучаются пространственные фигуры и методы решения пространственных задач при помощи построения их изображений на плоскости. Свойства плоских фигур рассматриваются в планиметрии, а свойства пространственных фигур – в стереометрии. В сферической тригонометрии изучаются зависимости между углами и сторонами сферических треугольников. Теория фотограмметрии и стерео фотограмметрии позволяет определять формы, размеры и положения объектов по их фотографическим изображениям в военном деле, космических исследованиях, геодезии и картографии. Современная топология изучает непрерывные свойства фигур и их взаимного расположения. Фрактальная геометрия (введена в науку в 1975 Б. Мандельбротом), изучающая общие закономерности процессов и структур в природе, благодаря современным компьютерным технологиям стала одним из самых плодотворных и прекрасных открытий в математике. Фракталы пользовались бы еще большей популярностью, если бы опирались на достижения современной теории начертательной геометрии.

При решении многих задач начертательной геометрии возникает необходимость в преобразованиях изображений, полученных на плоскостях проекций. Коллинеарные преобразования на плоскости: гомология и аффинное соответствие – имеют существенное значение в теории начертательной геометрии. Так как любая точка на плоскости проекций является элементом модели точки пространства, уместно предположить, что любое преобразование на плоскости порождается преобразованием в пространстве и, наоборот, преобразование в пространстве вызывает преобразование на плоскости. Все преобразования, выполняемые в пространстве и на модели, проводятся с целью упрощения решения задач. Как правило, такие упрощения связаны с геометрическими образами частного положения и, следовательно, суть преобразований, в большинстве случаев, сводится к преобразованию образов общего положения в частное.

Построенная по методу двух изображений плоская модель трехмерного пространства вполне однозначно или, как говорят, изоморфно сопоставляет элементы трехмерного пространства с их моделью. Это позволяет решить на плоскостях практически любую задачу, которая может возникнуть в пространстве. Но иногда по некоторым практическим соображениям, бывает целесообразно дополнить такую модель третьим изображением объекта моделирования. Теоретической основой для получения дополнительной проекции служит геометрический алгоритм, предложенный немецким ученым Гауком.

Задачи классической начертательной геометрии можно условно разделить на позиционные, метрические и конструктивные задачи. Задачи, связанные с выявлением взаимного положения геометрических образов относительно друг друга, называются позиционными. В пространстве прямые линии и плоскости могут пересекаться и могут не иметь пересечения. Открытые позиционные задачи в исходном пространстве, когда кроме задания пересекающихся образов не требуется никаких построений, становятся закрытыми на плоской модели, так как алгоритмы их решения распадаются из-за невозможности выделения геометрических образов. В пространстве прямая линия и плоскость всегда имеют пересечение в собственной или несобственной точке (прямая параллельна плоскости). На модели плоскость задается гомологией. На эпюре Монжа плоскость задается родственным соответствием и для решения задачи необходимо реализовать алгоритм построения соответственных элементов в заданном преобразовании. Решение задачи на пересечение двух плоскостей сводится к определению линии, которая одинаково преобразуется в двух заданных родственных соответствиях. Позиционные задачи на пересечение геометрических образов, занимающих проецирующее положение, значительно упрощаются в связи вырожденностью их проекций и поэтому играют особую роль. Как известно, одна проекция проецирующего образа обладает собирательным свойством, все точки прямой линии вырождаются в одну точку, а все точки и линии плоскости вырождаются в одну прямую линию, поэтому позиционная задача на пересечение сводится к определению недостающей проекции искомой точки или линии. Учитывая простоту решения позиционных задач на пересечение геометрических образов, когда хотя бы один из них занимает проецирующее положение, можно решать позиционные задачи общего вида с помощью методов преобразования чертежа для преобразования одного из образов в проецирующее положение. Имеет место факт: различные пространственные алгоритмы на плоскости моделируются одним и те же алгоритмом. Это можно объяснить тем, что в пространстве существует алгоритмов на порядок больше, чем на плоскости. Для решения позиционных задач используются различные методы: метод сфер, метод секущих плоскостей, преобразования чертежа. Операция проецирования может рассматриваться как способ образования и задания поверхностей.

Существует большой круг задач, связанных с измерением длин отрезков, величин углов, площадей фигур и т. д. Как правило, эти характеристики выражаются числом (две точки определяют число, характеризующее расстояние между ними; две прямые определяют число, характеризующее величину образованного ими угла и т. д.), для определения которого используются различные эталоны или шкалы. Примером таких эталонов являются обычная линейка и транспортир. Для того чтобы определить длину отрезка, надо сравнить его с эталоном, например, линейкой. А как приложить линейку к прямой линии общего положения на чертеже? Масштаб линейки в проекциях будет искажаться, причем для каждого положения прямой будет свой масштаб искажения. Для решения метрических задач на чертеже необходимо задать опорные элементы (несобственную плоскость, абсолютную полярность, масштабный отрезок), используя которые можно построить любую шкалу. Для решения метрических задач на эпюре Монжа используют преобразования чертежа так, чтобы искомые образы не искажались хотя бы в одной проекции. Таким образом, под метрическими задачами будем понимать преобразования отрезков, углов и плоских фигур в положения, когда они изображаются в натуральную величину. При этом можно использовать различные способы. Существует общая схема решения основных метрических задач на измерение расстояния и углов. Наибольший интерес представляют конструктивные задачи, решениекоторых опирается на теорию решения позиционных и метрических задач. Под конструктивными задачами понимаются задачи, связанные с построением геометрических образов, отвечающих определенным теорем начертательной геометрии.

В технических дисциплинах используются статические геометрические модели, которые помогают сформировать представления об определенных предметах, их кон­структивных особенностях, о входящих в их состав элементах, и динамические или функциональные геометрические модели, которые позволяют демонстрировать кинематику, функциональные связи или же технические и технологические процессы. Очень часто геометрические модели позволяют проследить ход таких явлений, которые обычному наблюдению не поддаются и могут быть представлены на основании имеющихся знаний. Изображения позволяют не только представить устройство оп­ределенных машин, приборов и оборудования, но одновременно охарактеризовать их технологические особенности и функциональ­ные параметры.

Чертежи дает не только геометрическую информацию о форме деталей узла. По нему понимается принцип работы узла, перемещение деталей относительно друг друга, преобразование движений, возникновение усилий, напряжений, преобразование энергии в механическую работу и т.п. В техническом вузе чертежи и схемы имеют место во всех изучаемых общетехнических и специальных дисциплинах (теоретическая механика, сопротивление материалов, конструкционные материалы, электромеханика, гидравлика, технология машиностроения, станки и инструменты, теория машин и механизмов, детали машин, машины и оборудование и др.). Для передачи различной информации чертежи дополняют различными знаками и символами, а для их словесного описания используются новые понятия, в основу формирования которых положены фундаментальные понятия физики, химии и математики. В процессе изучения теоретической механики и сопротивления материалов появляются качественно новые виды наглядности: схематичный вид конструкции, расчетная схема, эпюра. Эпюра – это разновидность графика, на котором показаны величина и знак различных внутренних силовых факторов, действующих в любой точке конструкции (продольных и поперечных сил, крутящих и изгибающих моментов, напряжений и т. д.). В курсе сопротивления материалов в процессе решения любой расчётной задачи требуется неоднократное перекодирование данных путём использования различных по своим функциям и уровням абстракции изображений. Схематичный вид, как первая абстракция от реальной конструкции, позволяет сформулировать задачу, выделить её условия и требования. Расчетная схема условно передаёт особенности конструкции, её геометрические характеристики и метрические соотношения, пространственное положение и направление действующих силовых факторов и реакций опор, точки характерных сечений. На её основе создаётся модель решения задачи, и она служит наглядной опорой в процессе реализации стратегии на разных этапах решения (при построении эпюры моментов, напряжений, углов закручивания и других факторов). В дальнейшем при изучении технических дисциплин идёт усложнение структуры используемых геометрических образов с широким использованием условно-графических изображений, знаковых моделей и их различных сочетаний. Таким образом, геометрические модели становятся интегрирующим звеном естественных и технических учебных дисциплин, а также методов профессиональной деятельности будущих специалистов. В основе становления профессиональной культуры инженера положена графическая культура, позволяющая разные виды деятельности объединить в рамках одной профессиональной общности. Уровень подготовки специалиста определяется тем, насколько развито и подвижно его пространст­венное мышление, так как, инвариантной функцией интеллектуальной деятельности инженера является оперирование образными графическими, схематическими и знаковыми моделями объектов.


Похожая информация.


Геометрические модели классифицируют на предметные, расчетные и познавательные. Среди геометрических моделей можно выделить плоские и объемные модели. Предметные модели тесно связаны с визуальным наблюдением. Информация, получаемая с предметных моделей, включает в себя сведения о форме и размерах объекта, о его расположении относительно других. Чертежи машин, технических приспособлений и их деталей выполняют с соблюдением ряда условных обозначений, особых правил и определенного масштаба. Чертежи могут быть монтажными, общего вида, сборочными, табличными, габаритными, наружных видов, пооперационными и т.д. Чертежи также различают по отраслям производства: машиностроительные, приборостроительные, строительные, горно-геологические, топографические и т.п. Чертежи земной поверхности называются картами. Чертежи различают по методу изображений: ортогональный чертеж, аксонометрия, перспектива, проекции с числовыми отметками, аффинные проекции, стереографические проекции, кинеперспектива и т.п. К предметным моделям относятся чертежи, карты, фотографии, макеты, телевизионные изображения и т.п. Предметные модели тесно связаны с визуальным наблюдением. Среди предметных геометрических моделей можно выделить плоские и объемные модели. Предметные модели существенно различаются по способу исполнения: чертежи, рисунки, картины, фотографии, киноленты, рентгенограммы, макеты, модели, скульптуры и т.п. В зависимости от стадии проектирования чертежи различают на чертежи технического предложения, эскизного и технического проектов, рабочие чертежи. Чертежи также различают на подлинники, оригиналы и копии.



Графические построения могут служить для получения численных решений различных задач. Графически можно выполнять алгебраические действия (складывать, вычитать, умножать, делить), дифференцировать, интегрировать и решать уравнения. При вычислении алгебраических выражений числа изображаются направленными отрезками. Для нахождения разности или суммы чисел соответствующие им отрезки откладываются на прямой линии. Умножение и деление осуществляется построением пропорциональных отрезков, которые отсекаются на сторонах угла прямыми параллельными линиями. Комбинация действий умножения и сложения позволяет вычислять суммы произведений и взвешенное среднее. Графическое возведение в целую степень заключается в последовательном повторении умножения. Графическим решением уравнений является значение абсциссы точки пересечения кривых. Графически можно вычислять определенный интеграл, строить график производной, т.е. дифференцировать и интегрировать, а также решать уравнения. Геометрические модели для графических вычислений необходимо отличать от номограмм и расчетных геометрических моделей (РГМ). Графические вычисления требуют каждый раз последовательности построений. Номограммы и РГМ представляют собой геометрические изображения функциональных зависимостей и не требуют для нахождения численных значений новых построений. Номограммы и РГМ используются для вычислений и исследований функциональных зависимостей. Вычисления на РГМ и номограммах заменяется считыванием ответов с помощью элементарных операций, указанных в ключе номограммы. Основными элементами номограмм являются шкалы и бинарные поля. Номограммы подразделяются на элементарные и составные номограммы. Номограммы также различают по операции в ключе. Принципиальное различие РГМ и номограммы состоит в том, что для построения РГМ используются геометрические методы, а для построения номограмм аналитические методы. Номография – переход от аналитической машины к геометрической машине.

К познавательным моделям относятся графики функций, диаграммы и графы. Графическая модель зависимости одних переменных величин от других называется графиком функций. Графики функций можно строить по заданной его части или по графику другой функции, используя геометрические преобразования. Графическое изображение, наглядно показывающее соотношение каких-либо величин, является диаграммой. Столбчатая диаграмма, представляющая собой совокупность смежных прямоугольников, построенных на одной прямой и представляющих распределение каких-либо величин по количественному признаку, называется гистограммой. Геометрические модели, изображающие отношения между элементами множества называются графами. Графы – модели порядка и образа действия. На этих моделях нет расстояний, углов, безразлично соединение точек прямой или кривой. В графах различаются только вершины, ребра и дуги. Впервые графы использовались в ходе решения головоломок. В настоящее время графы эффективно используются в теории планирования и управления, теории расписаний, социологии, биологии, в решении вероятностных и комбинаторных задач и т.п.

Особое значение имеют теоретические геометрические модели. В аналитической геометрии геометрические образы исследуются средствами алгебры на основе метода координат. В проективной геометрии изучаются проективные преобразования и неизменные свойства фигур, независящие от них. В начертательной геометрии изучаются пространственные фигуры и методы решения пространственных задач при помощи построения их изображений на плоскости. Свойства плоских фигур рассматриваются в планиметрии, а свойства пространственных фигур – в стереометрии. В сферической тригонометрии изучаются зависимости между углами и сторонами сферических треугольников. Теория фотограмметрии и стерео- и фотограмметрии позволяет определять формы, размеры и положения объектов по их фотографическим изображениям в военном деле, космических исследованиях, геодезии и картографии. Современная топология изучает непрерывные свойства фигур и их взаимного расположения. Фрактальная геометрия (введена в науку в 1975 Б. Мандельбротом), изучающая общие закономерности процессов и структур в природе, благодаря современным компьютерным технологиям стала одним из самых плодотворных и прекрасных открытий в математике. Фракталы пользовались бы еще большей популярностью, если бы опирались на достижения современной теории начертательной геометрии.

Задачи классической начертательной геометрии можно условно разделить на позиционные, метрические и конструктивные задачи.

В технических дисциплинах используются статические геометрические модели, которые помогают сформировать представления об определенных предметах, их кон­структивных особенностях, о входящих в их состав элементах, и динамические или функциональные геометрические модели, которые позволяют демонстрировать кинематику, функциональные связи или же технические и технологические процессы. Очень часто геометрические модели позволяют проследить ход таких явлений, которые обычному наблюдению не поддаются и могут быть представлены на основании имеющихся знаний. Изображения позволяют не только представить устройство оп­ределенных машин, приборов и оборудования, но одновременно охарактеризовать их технологические особенности и функциональ­ные параметры.

Чертежи дает не только геометрическую информацию о форме деталей узла. По нему понимается принцип работы узла, перемещение деталей относительно друг друга, преобразование движений, возникновение усилий, напряжений, преобразование энергии в механическую работу и т.п. В техническом вузе чертежи и схемы имеют место во всех изучаемых общетехнических и специальных дисциплинах (теоретическая механика, сопротивление материалов, конструкционные материалы, электромеханика, гидравлика, технология машиностроения, станки и инструменты, теория машин и механизмов, детали машин, машины и оборудование и др.). Для передачи различной информации чертежи дополняют различными знаками и символами, а для их словесного описания используются новые понятия, в основу формирования которых положены фундаментальные понятия физики, химии и математики.

Особенно интересным является использование геометрических моделей для проведения аналогий между геометрическими законами и реальными объектами для анализа сущности явления и оценки теоретического и практического значения математических рассуждений и анализа сущности математического формализма. Отметим, общепринятые средства передачи приобретаемого опыта, знаний и восприятия (речь, письменность, живопись и т. д.) являются заведомо гомоморфной проекционной моделью реальной действительности. Понятия о проекционном схематизме и операции проектирования относятся к начертательной геометрии и имеют своё обобщение в теории геометрического моделирования.Проекционные геометрические модели, получаемые в результате операции проецирования, могут быть совершенными, несовершенными (различной степени несовершенства) и распавшимися. С геометрической точки зрения, любой объект может иметь множество проекций, различающихся как положением центра проектирования и картины, так и их размерностью, т.е. реальные явления природы и общественных отношений допускают различные описания, отличающиеся друг от друга степенью достоверности и совершенства. Основой научного исследования и источником всякой научной теории является наблюдение и эксперимент, который всегда имеет целью выявления некоторой закономерности. Все эти обстоятельства послужили основанием для использования аналогий между различными видами проекционных геометрических моделей, полученных при гомоморфном моделировании, и моделями, возникающими в результате исследования.