Дежурное питание компьютера. Неисправности блока питания и их ремонт


Дорога в Ад, как известно, вымощена благими намерениями. Ниже перечислены намерения, которыми вымощена дорога в Ад для среднестатистического пользователя.

Итак,

11 способов убить систему или чего не следует делать во избежание неприятностей

Что такое компьютер? Всего лишь набор "железок", а значит, теоретически, устройство должно быть если уж и не вечным, то, по крайней мере, "долгоиграющим"… Эта мысль, вероятно, посещала многих и не раз… Однако, каждый, кто хотя бы однажды имел опыт общения с этим набором "железок" знает, что эта соблазнительная мысль, к сожалению, не имеет ничего общего с реальностью… Компьютеры небессмертны. Напротив. Они ломаются. Иногда поломку можно устранить. Иногда, увы, нет.

Реальность такова, что причиной большинства проблем является беспечность пользователей, их нежелание потратить лишние несколько минут на прочтение нужного раздела инструкции по эсплуатации, а зачастую банальное пренебрежение известными правилами. Прибавьте сюда вероятность брака комплектующих при производстве и Вы поймете, почему, вопреки теоретической возможности, подавляющему большинству систем редко удается прожить 10 лет без серьезной поломки. В принципе, на эти статистические данные не стоило бы обращать внимания. Ведь средняя продолжительность так называемого "технического ресурса" системы, т. е периода, в течение которого компьютер способен обеспечивать комфортную скорость работы с современным программным обеспечением, значительно короче, максимум 5 лет. Однако, дело все в том, что беспечное обращение может серьезно сократить и этот, достаточно небольшой срок эксплуатации системы. Это не преувеличение. Реальность такова, что среди тех, кто успел сменить в своей жизни несколько компьютеров, большинство, как минимум, однажды сталкивались с неожиданной фатальной поломкой системы, которая была далека от выработки своего ресурса.

Не так давно, сотрудники сайта PCstats Newsletter задали своим читателям вопрос: "Вы когда-нибудь сталкивались с неожиданной, как Вам казалось, и, к сожалению, фатальной поломкой системы?" В ответ они получили массу историй, проанализировав которые они пришли к следующим выводам.

Наиболее часто причиной фатальной поломки становятся:

  • Блоки питания (26%)
  • Бракованные компоненты и пренебрежение вопросами совместимости со стороны пользователя (23%)
  • Неправильная сборка (15%)
  • Компоненты, отвечающие за нормальное охлаждение системы (13%)
  • Поражение молнией или разрядом статического электричества (10%)
  • Отказ USB устройства в момент подключения (6%)
  • Невнимательность пользователя (3%)
  • Попытки разгона (2%)
Ниже Вы найдете описание каждой из перечисленных проблем, а также рекомендации, которые позволят снизить риск возникновения рассматриваемой проблемы.

1. Блок питания

Устройство, обозначаемое двумя короткими словами, обладает серьезным деструктивным потенциалом. Согласно статистическим данным, подавляющее большинство поломок ПК, заканчивающееся "смертью пациента", именно "на совести" неисправных блоков питания. Классическая "история болезни" выглядит следующим образом.

"… клиент принес компьютер со словами: "он не включается". Разумеется, подозрение упало на неисправный блок питания, но необходимо было в этом убедиться. Подключив компьютер к сети, я нажал кнопку включения питания. Последовала яркая вспышка. Блок питания сгорел, попутно повредив MOSFET и спалив планку 512 Мб PC3200 RAM… "

Тот факт, что блок питания является наиболее потенциально опасным элементом, не должен никого удивлять. В конце концов, именно эта "коробочка " несет ответственность за преобразование поступающего переменного тока напряжением 220 В в постоянный с напряжением 12-, 5- и 3.3- Вольт, необходимых компонентам современных ПК.

Отказ блока питания сопровождается, как правило, случайными импульсами, проходящими через все компоненты системы. В результате, некоторые из них также оказываются навсегда выведенными из строя.

"… когда я включил компьютер, раздался звук, похожий на взрыв фейерверка и из системного блока клубами повалил дым…"

Следует отметить, что среди прочих компонентов, отказ которых может спровоцировать фатальную поломку системы, блоки питания в случае поломки представляют наибольшую опасность для Вас и Вашего дома, поскольку зачастую поломка этого компонента сопровождается искрами и даже локальным возгоранием.

Что делать, чтобы снизить риск отказа блока питания? Ответ заключается всего в двух словах: "Brand Name". Самый лучший способ снизить риск отказа блока питания – приобретение блока питания производителей, специализирующихся на выпуске именно этой продукции. Разумеется, этот способ не является 100% гарантией безопасности Вашей системы, но существенно сократить риск отказа блока питания Вы сможете.

Рекомендовать можно блоки питания AcBel, Chieftec, Inwin, FSP, Hiper, CoolerMaster, Delta. Конечно, блоки питания Brand Name стоят дороже No Name, но разница в цене – это, по сути, и есть плата за безопасность.

Также, для того, чтобы снизить риск отказа блока питания, не следует держать системный блок на полу и тем более в запыленных местах. Ведь скопление пыли внутри блока питания увеличивает вероятность его отказа и, что самое неприятное, вероятность возгорания в момент поломки.

В заключении, хотелось бы отметить, что низкокачественные блоки питания могут быть выведены из строя в следствие частых перебоев или нестабильной подачи электроэнергии. В этом случае, если Вы не планируете менять блок питания в ближайшее время, целесообразно, по-крайней мере, озаботиться покупкой системы бесперебойного питания (UPS) или стабилизатора напряжения.

2. Охлаждение процессора

"…перегревающийся процессор источает отвратительный запах…" Современные процессоры отличаются исключительно высоким уровнем тепловыделения во время работы. Именно поэтому им жизненно необходимы эти огромные алюминиевые и медные радиаторы, иногда входящие в комплект поставки, иногда просто рекомендуемые к покупке производителями. Самый быстрый способ убить процессор – лишить его необходимого охлаждения. Некоторые процессоры способны выжить без должного охлаждения, автоматически "сбросив" тактовую частоту, но объективно, нет никакой гарантии, что этого окажется достаточно, чтобы спасти Ваш процессор. Некоторые устаревшие модели, такие как, например, серия AMD Athlon и Athlon XP+, не получая должного охлаждения, "сварятся" за считанные секунды.

"… Я "поджарил" процессор. AMD Duron 950. Я тестировал материнскую плату. Руководствуясь банальным желанием сделать все побыстрее, я не зафиксировал радиатор на процессоре. Просто "положил" его сверху. Я думал, в случае с Duron у меня есть немного времени. Прошло около 5 секунд (во всяком случае, так мне показалось), прежде, чем я осознал, что плата уже не запустится и почувствовал этот странный своеобразный запах…"

Разумеется, большинство из вас, прочитав отрывок из этого письма, скажет что-то вроде: "Конечно, бывает всякое, но я не настолько глуп, чтобы включать систему без установленного на процессор радиатора…" Возможно, это так и есть. Однако, никто ведь не застрахован от случайной поломки вентилятора, от того, чтобы случайно в процессе его установки нажать слишком сильно и повредить новенький чип стоимостью в $700, от того, чтобы, сделав все правильно, в последний момент забыть включить питание вентилятора, или от других подобных случайностей. Существует довольно много способов убить систему, не уделив должного внимания устройству, отвечающему за охлаждение процессора.

Что делать, чтобы снизить риск попадания в перечисленные выше ситуации? Прежде всего, будьте предельно внимательны. Устанавливая радиатор на процессор, четко следуйте инструкциям, изложенным в руководстве по эксплуатации. Не забудьте нанести необходимый слой термопасты или удалить защитную крышку с радиатора, если этот слой уже нанесен на его поверхность. Прежде чем зафиксировать радиатор, убедитесь в том, что он находится в правильном положении и без перекосов прилегает к ядру процессора. Не забудьте подключить питание вентилятора, убедившись, что Вы правильно выбрали разъем на материнской плате и не перепутали полярность.

Установив радиатор и вентилятор на процессор, оставайтесь внимательными. Помните о том, что рост уровня шума системы и скрежетание могут быть признаками "умирающей" системы охлаждения CPU и в этом случае, целесообразно, не дожидаясь развязки, обратиться за консультацией к специалистам.

3. Ярость Зевса

Удивительно, но факт. Случаи поражения молнией составляют 10% среди всех причин, приводящих к фатальной поломке системы.

"…Был дождливый день, на горизонте сверкали молнии. Затем случился перепад напряжения, и мой модем загорелся…"

Попадание молнии, как правило вызывает серьезные перепады напряжения в телефонных линиях и линиях электропередач. Это неопасно, когда попадание молнии в линию электропередач или телефонную линию происходит на большом расстоянии от здания, в которое эти линии протянуты. Однако, чем меньше расстояние до ближайшего здания, тем выше риск повреждения находящегося в нем электрооборудования.

"… моя xBox, мой DSL модем, сетевой хаб и все сетевые адаптеры в доме "погибли" в результате попадания молнии в телефонную линию. Сначала сгорел модем, затем хаб, а вслед за ним все сетевые адаптеры и моя xBox…"

Как правило, наиболее уязвимы во время грозы именно модемы и прочие устройства, подключенные к телефонным линиям. Другие компоненты ПК, подключенные к более надежно заэкранированным линиям электропередач, обладают более высокими шансами выжить. Разумеется, модем, встроенный в материнскую плату, предвещает мало хорошего.

Что делать, чтобы этого избежать? Помните, как Ваша мама учила Вас в детстве? "На улице гроза. Выключи телевизор…" Она была совершенно права. В дождливый день, оставшись дома и наблюдая сверкающие неподалеку от Вашего района молнии, выключите компьютер, отключите его от сети, а Ваш модем – от телефонной линии. Если совсем скучно, посмотрите лучше телевизор. В конечном итоге, его будет проще заменить.

Если же грозы – частые гости в Вашем регионе, купите качественную систему бесперебойного питания (UPS), которая помимо всего прочего обладает фильтром скачков напряжения в сетевых и телефонных линиях. Это позволит Вам существенно снизить риск выхода Вашей системы из строя вследствие попадания молнии в телефонную линию или линию электропередач.

4. Несовместимые или неисправные компоненты = убитая система

"Мой друг убил систему. Причина – неисправный блок питания. Я посоветовал ему протестировать память в другой системе. Знаете, чем все закончилось? Еще одной убитой системой. Я подумал, что он был просто недостаточно внимателен. Пожурил его и взял его память домой, чтобы протестировать на своем ПК. Догадываетесь, каков был конец истории? Я убил свою систему…"

Развитие технологий и появление на рынке новых комплектующих неизбежно порождает проблемы несовместимости. Более современные устройства могут быть несовместимыми с устройствами предыдущих поколений, и это может стать причиной серьезной поломки.

Как этого избежать? Будьте внимательны и не ленитесь. Конечно, новые комплектующие также могут оказаться неисправными вследствие банального производственного брака, но если Вы устанавливаете в систему бывшее в употреблении устройство, потратьте немного времени на то, чтобы безопасным для Вашего ПК способом выяснить, работает оно или нет, а также совместимо ли оно с другими компонентами Вашей системы или нет.

Если в Вашей системе отказал блок питания и Вам необходимо проверить, какие комплектующие "выжили", не ленитесь. Прежде, чем устанавливать их в другую систему, потратьте немного времени на изучение вопроса совместимости. Если же в Вашем распоряжении нет системы, на которой Вы могли бы протестировать интересующие Вас компонеты со 100% уверенностью в их совместимости с компонентами стенда, обратитесь за помощью к специалистам, например в магазин, в котором Вы приобретали эти компоненты.

5. Пренебрежение элементарными правилами может привести к малоприятным последствиям

К сожалению, многие из нас зачастую пренебрегают правилами эксплуатации, на перечисление которых каждый уважающий себя производитель тратит по нескольку страниц каждой инструкции, вкладываемой в комплект поставки каждого выпускаемого им устройства.

"Однажды, собрав очередной ПК, я обнаружил, что мой второй Slave диск "отсутствует" в системе. Для каждого джампера было выбрано правильное положение, но диска тем не менее в системе "не было". Проверив все, я обнаружил, что к диску не подключен кабель питания, и я попытался подключить его, не выключая компьютер. Думаю, Вы догадываетесь, чем все закончилось…"

Подавляющее большинство пользователей прекрасно знают о том, что ничего не следует трогать в системе, и тем более пытаться внести какие-либо изменения, без предварительного выключения питания. Тем не менее систематически находятся такие, кто именно так и поступает.

"Однажды, мне понадобилось подключить жесткий диск. Компьютер был уже включен, и я подумал, что выключение займет очень много времени. К несчастью, Molex коннектор на жестком диске был перевернут и когда я попытался подключить его, мне не хватило точности. Посыпались искры… От неожиданности, я уронил диск на новенькую видеокарту. Конечно же, она погибла, как и сам диск…"

Как этого избежать? Не нужно притворяться идиотами. Все мы умные, здравомыслящие люди. Все мы умеем читать. Читайте рекомендации производителя и выполняйте их. При необходимости внести какие бы то ни было изменения в систему, начните с выключения питания. Именно для этого и предназначена большая красивая кнопка Power на лицевой панели Вашего системного блока. И не важно, если кто-то, пусть даже консультант в крупном специализированном магазине, скажет Вам, что флоппи-дисководы поддерживают "горячую замену". Не надо проверять это на практике! Нужно заменить флоппи-дисковод? Выключите питание! А затем выполните все необходимые действия.

6. Отказ USB устройства в момент подключения

"…Я подключил один из своих USB флеш-дисков, чтобы скопировать данные на жесткий диск, и компьютер просто выключился…В результате, умер процессор и все оптические приводы. Что касается USB флеш-диска, я так и не решился подключить его к другой системе, чтобы проверить на предмет работоспособности…"

В списке причин поломок, имеющих наиболее катастрофические последствия для системы, отказы USB устройств в момент подключения и случаи короткого замыкания занимают скромное шестое место. Основной характеристикой подобных инцидентов является их случайный характер. Устройство может безупречно работать в течение многих месяцев и даже в течение нескольких лет, и внезапно отказать при очередном штатном подключении.

USB интерфейс имеет дело с более высокими токами, нежели большинство других I/O интерфейсов. Именно поэтому короткое замыкание оборачивается катастрофическими последствиями для всей системы, если на материнской плате отсутствуют предохранители. Другой возможной причиной отказа USB устройств может быть тот факт, что они гораздо чаще, чем другие устройства подвергаются процедуре подключения/отключения, что увеличивает вероятность износа контактов и, соответственно, риск отказа в момент очередного подключения.

Как этого избежать? Эффективного способа снижения риска отказа USB устройства в момент подключения, пожалуй, не существует. Разве что – не использовать USB устройства совсем. Однако, такой рекомендации мы, разумеется, дать не можем.

Согласно статистике, наибольшим процентом отказа обладают устройства, подключаемые к USB разъемам на передней панели корпуса. Возможно, эти данные заставят Вас по-новому оценить целесообразность использования таких USB портов.

Если необходимость в подключении/отключении USB устройств возникает достаточно часто, можно рекомендовать приобрести USB-хаб или, по крайней мере, использовать удлинительный кабель.

7. Проблемы с подачей электроэнергии

Причинами значительной доли всех фатальных отказов систем являются разнообразные проблемы с подачей электроэнергии. Частые скачки напряжения, внезапные временные отключения подачи электроэнергии, вынужденная постоянная или регулярно повторяющаяся работа аппаратуры при пониженном напряжении, а также повреждения кабелей питания способны сократить жизнь Вашего ПК.

"Однажды, где-то в доме случилось короткое замыкание. Единственным местом в доме с заземлением оказался…Вы догадываетесь?… Да! Мой компьютер! Мама почувствовала запах гари, и, заглянув в мою комнату, увидела клубы дыма и языки пламени, вырывающиеся из-под крышки корпуса…"

Объективно, все проблемы, перечисленные в данном разделе, можно было бы отнести в раздел, посвященный случаям отказа блоков питания. Однако, мы выделили эти проблемы в отдельный раздел, чтобы подчеркнуть, что регулярные перебои или сбои в подаче электроэнергии могут быть не менее опасными, чем неисправный или некачественный блок питания.

Что сделать, чтобы не попасть в подобную ситуацию? Каждая система должна иметь хотя бы фильтр бросков напряжения. В идеале, неплохо обзавестись системой бесперебойного питания (UPS), обеспечивающей стабилизацию напряжения на выходе. Стоимость хорошего UPS обычно колеблется в районе $100. Если Вам покажется, что это слишком много, подумайте, во сколько Вам обойдется замена всей системы.

8. Короткое замыкание

В подавляющем большинстве случаев причиной короткого замыкания в системе становится неправильная установка одного из компонентов. В результате, как правило, металлическая часть неправильно установленного устройства соприкасается с дорожками на материнской плате или другими электронными компонентами, между соприкасающимися элементами возникает электрический разряд, зачастую приводя к разрушительным последствиям.

Также, причиной короткого замыкания могут стать "потерянные" во время сборки винты или случайно попавшие в корпус мелкие металлические предметы.

Как этого избежать? Собрав систему или осуществив замену или добавление в систему какого-либо компонента, прежде, чем закрыть корпус убедитесь в том, что все устройства установлены правильно, в том, что кабели с тонкой изоляцией не касаются материнской платы, а также в том, что в корпусе не осталось ничего лишнего. Помните о том, что если Вы пожалеете на это время, в будущем это может обернуться для Вас весьма неприятными последствиями.

9. Разряд статического электричества

Неприятности, которые способен вызвать разряд статического электричества, хорошо известны подавляющему большинству пользователей. Статический разряд может не причинить вреда устройству, на поверхности которого он рождается, но может вывести из строя другие компоненты системы.

"Все, что я сделал – сел и положил руку на мышь. Разряд статического электричества был неприятной неожиданностью. Еще более неприятной неожиданностью оказался тот факт, что клавиатура перестала реагировать на нажатия клавиш. Мышь также не подавала признаков жизни и к тому же, как я заметил, сильно нагрелась. Я перезагрузил систему, но это не помогло. Клавиатура по-прежнему не работала, а мышка нагрелась до такой степени, что к ней невозможно было прикоснуться…"

Несмотря на то, что для человека, как правило, разряд статического электричества кажется незначительным, хотя и малоприятным, следует помнить, что в процессе этой небольшой встряски высвобождается энергия, способная причинить серьезный ущерб исключительно чувствительным электросхемам настольного ПК, привыкшим к тщательно выверенному напряжению питания, подача которого сопровождается эффективным охлаждением. Человеческий организм обладает несравнимо более высокой сопротивляемостью электрическому току, чем среднестатистическая микросхема. Поэтому, прикосновение к какому-либо компоненту системы без предварительного "заземления" может обернуться не только малоприятными физическими ощущениями, но и довольно серьезными расходами на замену поврежденных компонентов.

Как этого избежать? Прежде, чем приступить к работе, прикоснитесь к заземляющему источнику, чтобы избавиться от заряда статистического электричества, который Вы могли накопить. Антистатические браслеты – неплохое решение проблемы, хотя они и не являются обязательными компонентами комплекта поставки современных ПК.

Кроме того, планируя работу с компьютером, постарайтесь не одевать шерстяных вещей. Как бы парадоксально это не прозвучало, но шерстяные вещи способны убить Вашу систему. И еще кошки… эти маленькие ходячие "шерстяные вещи"… Держите их подальше от своих ПК.

10. Транспортировка

Компьютеры состоят из множества компонентов, которые довольно легко повредить в процессе транспортировки.

"Во время переноски компьютера в дом моего друга, а затем обратно, один из фиксаторов планки памяти открылся, и планка наполовину выскочила из слота. Материнская плата сгорела… Память, как ни странно, до сих пор работает…"

Постоянные переносы компьютера с места на места – верный способ убить систему. Радиаторы CPU становятся все больше и тяжелее, аналогичная тенденция прослеживается и среди систем охлаждения графических процессоров. Эти элементы создают серьезную нагрузку на материнскую плату даже, когда компьютер находится на одном месте. В процессе же переноски, нагрузка на материнскую плату существенно возрастает.

Как избежать неприятностей при транспортировке компьютера? Если у Вас возникла необходимость транспортировки компьютера, то оказавшись на месте назначения, прежде, чем подключить машину к сети, снимите крышку системного блока и проверьте, все ли в порядке внутри. Убедитесь в том, что карты расширения, планки памяти, радиаторы, видеокарта по-прежнему прочно зафиксированы. Потратив на это немного времени и своего внимания, Вы сможете снизить риск выхода системы из строя.

И кроме того, пострайтесь не ронять компьютер.

11. Разгон

Сегодня разгон стал настолько привычным делом, что многие стали забывать о том, что эта процедура может иметь негативные последствия. Тем не менее, разгон автоматически аннулирует гарантию на комплектующие, которые Вы использовали при сборке Вашего ПК или на весь компьютер, если Вы приобретали компьютер в сборе.

Увеличение напряжения, являющееся неотъемлемой составляющей процедуры разгона, создает дополнительную нагрузку на компоненты, которые оно затрагивает, неизбежно способствуя сокращению их срока службы.

Вероятность отказа разгоняемых компонентов непосредственно в момент разгона невелика, при условии, конечно, что Вы не поднимите "планку" слишком высоко. Однако, в долгосрочной перспективе, вероятность преждевременной "кончины" разогнанных компонентов довольно велика.

Как избежать отказа комплектующих при разгоне? Единственный правильный ответ на этот вопрос – "Не разгоняйте систему. Забудьте о такой возможности и Вы сможете избежать многих неприятностей, которые может вызвать малейшая ошибка при выполнении данной процедуры". Однако, подавляющее большинство пользователей вряд ли последуют этой рекомендации. Поэтому тем, кто все же будет пытаться улучшить характеристики своей системы с помощью разгона, можно посоветовать следующее. Будьте терпеливы. Прежде, чем приступать к экспериментам на собственной системе, потратьте немного времени на изучение чужого опыта. При желании, в Интернете можно найти весьма занятные документы, посвященные данному вопросу. Разгоняя же собственную систему, поднимайте рабочие частоты и напряжение постепенно. Помните о том, что слишком резкое изменение одной из характеристик может привести к малоприятным последствиям.

В этой статье вы найдёте несложные рекомендации, про то, как можно определить, что неисправность ПК с блоком питания связана.
Блок питания неисправный в большинстве случаях не сдают в ремонт, а покупают новый. Потому что в итоге ремонта в домашних условиях, а ещё и результатом действий неправильных могут быть также и повреждения иных узлов компьютера, которые питаются от блока питания. И прежде чем Вы приступите к ремонту блока питания, Вам необходимо определиться, насколько сильно Вы разбираетесь в вопросах радиоэлектроники и безопасности электрической, а также в случае необходимости знать где расположен склад электронных компонентов .
Неполадка блока питания может проявиться как неработоспособность компьютера полная или как сбои системы периодические, которые проявляются в ошибках программ или незапланированных перезагрузках системы.
Для начала Вам необходимо проверить полностью все разъёмы , а также соединения исходящие в блок питания и входящие в него. Приложив соответствующие усилия, попробуйте подоткнуть их. Конечно, проводить все эти действия необходимо на обесточенном компьютере.

Если Вы нашли разъём, который плохо контачит, то может быть, что проблема заключается только в нём, так как при работе ПК идёт вибрация от кулера и плохо контачащий разъём может обрывать цепь питания на короткое мгновение или навсегда. Если после того как Вы проверили разъёмы и неполадки не устранились, то необходимо снять блок питания.
На место снятого неисправного блока питания, установите другой исправный блок питания, если у Вас такой имеется, и если все неполадки пропали, то вся причина в неисправном блоке питания.
А если Вы не нашли нигде рабочий блок питания, то очень аккуратно вскройте неисправный блок питания. Внимательно осмотрите плату с радиодеталями на присутствие следов копоти или гари. Также внутреннее содержимое блока питание не должно пахнуть палёной электропроводкой, а ещё запах горелой пыли указывает на нагревающиеся детали.

Повертите предохранитель , а если он сгорел, то нельзя ни в коем случае вставлять новый или делать перемычку. Если предохранитель сгорел, то это значит, внутри блока питания было замыкание. На предмет короткого замыкания в середине блока питания можно в домашних условиях проверить блок питания. Для начала обязательно отключите блок питания от ПК. После необходимо взять сетевую лампочку накаливания, которая имеет напряжение 220 вольт и мощность 100 ватт.
А потом подключить эту лампу на место сгоревшего предохранителя и включить блок питания в сеть 220 вольт, но при этом обязательно должен быть отключён блок питания от компьютера.
Если лампочка ярко загорелась, то это значит, что блок питания всё же неисправен и его необходимо, либо выкинуть, либо сдать в ремонт.

После разборки БП прозвонить на короткое замыкание ключевые транзисторы (типично BUT11A), резисторы на 1..3 ом в базе их на обрыв, мост на короткое/обрыв, пред-выходные транзисторы на кз/обрыв, диоды во вторичных цепях на пробой. В качестве пред-выходных при замене можно ставить наши КТ315, выходные или наши КТ872, КТ8114 (но тогда для самозапуска возможно потребуется снижение номинала резисторов между базой и коллектором их до 200к...150к), или импортные типа этих: 2SC3447, 2SC3451, 2SC3457, 2SC3460(61), 2SC3866, 2SC4706, 2SC4744, BUT11A, BUT12A, BUT18A, BUV46, MJE13005 После смены неисправных деталей проверить исправность микросхемы ШИМ типа tl494 или ее аналога, если определено что она неисправна - сменить. Желательно для профилактики убрать переключатель 220/120в. При включении в сеть для проверки, необходимо вместо предохранителя включить лампу накаливания типа 100вт 220в, а в выходную цепь +5в резистор 2...5ом 20вт

Проверка микросхемы TL494 и ее аналогов (М1114ЕУ4, mPC494C, IR3M02). В состав этой ИС входит: задающий генератор пилообразного напряжения А1, частота генератора задается внешним резистором R1 конденсатором C1 и может быть приближенно определена по формуле f=1/(C1*R1). R1 включается между выводами 6 и 7, а C1 между выводами 5 и 7. Амплитуда пилы не зависит от номиналов R1 и C1 и приблизительно равна 4В; усилитель цепи обратной связи DA2; широтно-импульсный модулятор, выполненный на компараторе DA4; усилитель защиты преобразователя от перегрузки по току или короткого замыкания на нагрузке DA1; делитель частоты на два, выполненный на счетном тригере DD2; каскады совпадения на элементах DD1, DD5, DD6; каскад на компараторе DA3, позволяющий построить:
- схему исключения перенапряжения на выходе преобразователя в переходных режимах;
- схему ограничения диапазона изменения коэффициента заполнения в необходимых пределах;
- схему обеспечения плавного выхода преобразователя на режим;
- логические элементы DD3, DD4 предназначенные для задания режима управления либо однотактными либо двухтактными преобразователями;
- выходные транзисторы Q1 и Q2;
- встроенный непрерывный стабилизатор напряжения DA5 и реле напряжения (пороговое устойство) DA6;
- развязывающие диоды D1, D2 для обеспечения функции "ИЛИ" для выходных сигналов микросхем DA1, DA2.

Микросхема управления работает следующим образом. Непрерывный стабилизатор напряжения обеспечивает питанием все функциональные узлы ИС и задает оптроне напряжение +5В (вывод 14) относительно общего вывода 7. Реле напряжения DA6 разрешает прохождение сигналов управления на базы транзисторов Q1 и Q2 только в том случае, если DA5 вышла на режим. Пилообразное напряжение (вывод 5), вырабатываемое генератором А1, поступает на вход компараторов DA3, DA4. На другой вход ШИМ-компаратора DA4, через развязывающий диод D2 поступает сигнал рассогласования с усилителя ошибки DA2. На один из входов DA2, непосредственно или через делитель, подключается источник опорного напряжения с вывода 14, а на другой вход поступает напряжение цепи обратной связи, т.е. выходное какого-либо канала (обычно с канала +5В). Между выводами 3 и 3, как правило, включается корректирующая RC-цепь для обеспечения устойчивой работы стабилизирующего преобразователя. С выхода ШИМ - компаратора прямоугольные импульсы поступают на один вход схемы совпадения DD1, с ее выхода импульсы проходят на счетный триггер DD2 и на схемы совпадения DD5, DD6.

Если на управляющий вход элементов DD3, DD4 (вывод 13) подана логическая единица, то микросхема обеспечивает управление двухтактными преобразователями с паузами на нуле, а если на вывод 13 подан логический ноль (вывод 13 сеодинен с выводом 7), то DD2 не оказывает воздействие на работу ключей DD3, DD4 и в этом случае микросхема может быть использована для ШИМ или ЧИМ управления однотактными проебразователями. Для построения защиты по току, как отмечалось ранее, может быть использован DA1, при этом на один из его входов подается опорное напряжение, определяющее уровень срабатывания токовой защиты, а на второй вход подается сигнал с датчика тока. Узлы с использованием схем DA1 и DA3 могут быть самыми разнообразными. Некоторые примеры рассмотрены при описании нижеследующих схем блоков питания. Для увеличения выходной мощности микросхемы при управлении однотактниками транзисторы Q1 и Q2 могут быть запараллелены, поскольку в этом режиме они работают синхронно и синфазно. Выводы М1114ЕУ4 полностью соответствуют выше перечисленным зарубежным аналогам, а соответствие между выводами М1114ЕУ3 и М1114ЕУ4 представлено ниже.

М1114ЕУ4 -- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 М1114ЕУ3 -- 4 5 6 7 8 9 15 10 11 12 13 14 16 1 2 3 Основные параметры М1114ЕУ3, М1114ЕУ4 Uпит.микросхемы(вывод 12) - Uпит.min=9В; Uпит.max=40В Допустимое напряжение на входе DA1, DA2 не более Uпит/2 Допустимые параметры выходных транзисторов Q1, Q2: Uнас менее 1.3В; Uкэ менее 40В; Iк.max менее 250мА Остаточное напряжение коллектор-эммитер выходных транзисторов не более 1.3В. I потребляемый микросхемой - 10-12мА Допустимая мощность рассеивания: 0.8Вт при температуре окр.среды +25С; 0.3Вт при температуре окр.среды +70С. Частота встроенного опорного генератора не более 100кГц. окр.среды +70С. Частота встроенного опорного генератора не более 100кГц.

Алгоритм поиска неисправностей М1114ЕУ3, М1114ЕУ4 Проверка работоспособности микросхемы производится при отключенном БП и при питании ИС от внешнего ИВЭП напряжением +9В...+15В поданного на 12-й вывод относительно 7-го. Все измерения проводятся тоже относительно 7-го вывода. Кроме того подключение к ИС лучше осуществлять подпайкой проводов, а не с помощью "крокодилов", это обеспечит повышенную надежность контакта и исключит возможность ложных соприкосновений.

  • При подаче внешнего напряжения осциллографируем напряжение на 14-ом выводе, оно должно быть +5В(+/-5%) и оставаться стабильным при изменении напряжения на 12-ом выводе от +9В до +15В. Если этого не происходит, то значит вышел из строя внутренний стабилизатор напряжения DA5
  • С помощью осциллографа наблюдаем наличие пилообразного напряжения на выводе 5 (см.рис.1.1а UвхDA4) если оно отсутствует или имеет искаженную форму, то необходимо проверить исправность времязадающих элементов C1 и R1 подключаемых соответственно к 5-му и 6-му выводам, если эти элементы исправны, то неисправен встроенный генератор и необходима замена ИС.
  • Проверяем наличие прямоугольных импульсов на выводах 8 и 11. Они должны соответствовать диаграмме 5 и 5" на рис.1.1а. Если импульсы отсутствуют, то ИС неисправна, а если присутствуют, то проверяем работоспособность других узлов ИС.
  • Соединив проводником 4-й вывод с 7-м, мы должны увидеть, что ширина импульсов на 8-м и 11-м выводах увеличилась; соединив 4-й вывод с 14-м импульсы должны исчезнуть, если этого не наблюдается, то надо менять ИС. Снизив напряжение внешнего до 5В, мы должны увидеть, что импульсы исчезли (это говорит, что сработало реле напряжения DA6), а подняв напряжение до +9В...+15В импульсы должны снова появиться, если этого не произошло и импульсы (которые могут быть произвольными) присутствуют на 8 и 11, то значит в ИС неисправно реле напряжения и необходима замена микросхемы.
  • Проверка работоспособности DA2. Снимаем ранее установленную перемычку между 4-м и 7-м выводом, подаем на 12-й вывод напряжение питания в пределах +9В...+15В и соединив 1-й вывод с 14-м мы должны увидеть, что на 8-м и 11-м выводах ширина импульсом стала равгой нулю, если этого не происходит, то DA2 неисправна и надо менять ИС.
  • В БП на рис.2, рис.3, рис3.4, DA1 используется в узлах токовой защиты и если предыдущие тесты показали, что все другие узлы ИС функционируют нормально, то проверка исправности DA1 осуществляется следующим образом: подаем на 12-й вывод +9В...+15В и наблюдаем на 8 и 11 примоугольные импульсы. От другого источника питания подаем отрицательное напряжение на 15 вывод (относительно 7-го) при этом импульсы на 8 и 11 должны исчезнуть. Если этого не происходит, то значит не работает узел защиты на DA1.

В этой статье мы расскажем об увлекательнейшем занятии, ремонте импульсных блоков питания.

ВНИМАНИЕ!!! РЕМОНТ БЛОКОВ ПИТАНИЯ — ОЧЕНЬ ОПАСНОЕ ЗАНЯТИЕ. ВСЕ МАНИПУЛЯЦИИ С БЛОКАМИ ПИТАНИЯ ВЫ ДЕЛАЕТЕ НА СВОЙ СТРАХ И РИСК. АВТОР СТАТЬИ НЕ НЕСЕТ НИКАКОЙ ОТВЕТСТВЕННОСТИ ЗА ВОЗМОЖНЫЙ УЩЕРБ, НАНЕСЕННЫЙ ВАШЕМУ ЗДОРОВЬЮ ИЛИ ИМУЩЕСТВУ.

Меры предосторожности.
Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.
Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.
Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет — все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.
Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Инструментарий.
1. Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
2. Отсос для припоя и (или) оплетка. Служат для удаления припоя.
3. Отвертка
4. Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
5. Мультиметр
6. Пинцет
7. Лампочка на 100Вт
8. Очищенный бензин или спирт. Используется для очистки платы от следов пайки.

Устройство БП.
Немного о том, что мы увидим, вскрыв блок питания.

Внутреннее изображение блока питания системы ATX
A – диодный мост, служит для преобразования переменного тока в постоянный
B – силовые конденсаторы, служат для сглаживания входного напряжения
Между B и C – радиатор, на котором расположены силовые ключи
C — импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки
между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений
D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе
E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

Распиновка разъема 24 pin и измерение напряжений.
Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.
Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.


Визуальный осмотр.
Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.
Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.
Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Первичная диагностика.
Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.
Неисправности:
1. БП не запускается, отсутствует напряжение дежурного питания
2. БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
3. БП уходит в защиту,
4. БП работает, но воняет.
5. Завышены или занижены выходные напряжения

Предохранитель.

Если вы обнаружили, что сгорел плавкий предохранитель, не спешите его менять и включать БП. В 90% случаев вылетевший предохранитель это не причина неисправности, а её следствие. В таком случае в первую очередь надо проверять высоковольтную часть БП, а именно диодный мост, силовые транзисторы и их обвязку.

Варистор


Задачей варистора является защита блока питания от импульсных помех. При возникновении высоковольтного импульса сопротивление варистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При перенапряжении в сети варистор резко уменьшает свое сопротивление, и возросшим током через него выжигается плавкий предохранитель. Остальные элементы блока питания при этом остаются целыми.
Варистор выходит из строя из-за скачков напряжения, вызванными например грозой. Так же варисторы выходят из строя, если по ошибке вы переключили БП в режим работы от 110в. Вышедший из строя варистор обычно определить не сложно. Обычно он чернеет и раскалывается, а на окружающих его элементах появляется копоть. Вместе с варистором обычно перегорает предохранитель. Замену предохранителя можно производить только после замены варистора и проверки остальных элементов первичной цепи.

Диодный мост
Диодный мост представляет собой диодную сборку или 4 диода стоящие рядом друг с другом. Проверить диодный мост можно без выпаивания, прозвонив каждый диод в прямом и обратном направлениях. В прямом направлении падение напряжения должно быть около 500мВ, а в обратном звониться как разрыв.




Диодные сборки измеряются следующим образом. Ставим минусовой щуп мультиметра на ножку сборки с отметкой «+», а плюсовым щупом прозваниваем в направления указанных на картинке.


Конденсаторы
Вышедшие из строя конденсаторы легко определить по выпуклым крышкам или по вытекшему электролиту. Конденсаторы заменяются на аналогичные. Допускается замена на конденсаторы немногим большие по ёмкости и напряжению. Если из строя вышли конденсаторы в цепи дежурного питания, то блок питания будет включаться с n-ого раза, либо откажется включаться совсем. Блок питания с вышедшими из строя конденсаторами выходного фильтра будет выключаться под нагрузкой либо так же полностью откажется включаться, будет уходить в защиту.
Иногда, высохшие, деградировавшие, конденсаторы выходят из строя, без каких либо видимых повреждений. В таком случае следует, предварительно выпаяв конденсаторы проверить их емкость и внутренние сопротивление. Если емкость проверить нечем, меняем все конденсаторы на заведомо рабочие.





Резисторы



Номинал резистора определятся по цветовой маркировке. Резисторы следует менять только на аналогичные, т.к. небольшое отличие в номиналах сопротивления может привести к тому, что резистор будет перегреваться. А если это подтягивающий резистор, то напряжение в цепи может выйти за пределы логического входа, и ШИМ не будет генерировать сигнал Power Good. Если резистор сгорел в уголь, и у вас нет второго такого же БП, чтобы посмотреть его номинал, то считайте, что вам не повезло. Особенно, это касается дешевых БП, на которые, практически не возможно достать принципиальных схем.


Диоды и стабилитроны




Проверяются прозвонкой в обе стороны. Если звонятся в обе стороны как К.З. или разрыв, то не исправны. Сгоревшие диоды следует менять на аналогичные или сходные по характеристикам, внимание обращаем на напряжение, силу тока и частоту работы.

Транзисторы, диодные сборки .


Транзисторы и диодный сборки, которые установлены на радиатор, удобнее всего выпаивать вместе с радиатором. В «первичке» находятся силовые транзисторы, один отвечает за дежурное напряжение, а другие формируют рабочие напряжения 12в и 3,3в. Во вторичке на радиаторе находятся выпрямительные диоды выходных напряжений (диоды Шоттки).
Проверка транзисторов заключается в «позвонке» р-п-переходов, также следует проверить сопротивление между корпусом и радиатором. Транзисторы не должны замыкать на радиатор. Для проверки диодов ставим минусовой щуп мультиметра на центральную ногу, а плюсовым щупом тыкаем в боковые. Падение тока должно быть около 500мА, а в обратном направление должен быть разрыв.


Если все транзисторы и диодные сборки оказались исправные, то не спешите запаивать радиаторы обратно, т.к. они затрудняют доступ к другим элементам.ШИМ

Если ШИМ визуально не поврежден и не греется, то без осциллографа его проверить довольно сложно.
Простым способом проверки ШИМ, является проверка контрольных контактов и контактов питания на пробой.
Для этого нам понадобиться мультиметр и дата шит на микросхему ШИМ. Диагностику ШИМ следует проводить, предварительно выпаяв её. Проверка производится прозвоном следующих контактов относительно земли (GND): V3.3, V5, V12, VCC, OPP. Если между одним из этих контактов и землей сопротивление крайне мало, до десятков Ом, то ШИМ под замену.

Дроссель групповой стабилизации (ДГС).
Выходит из строя из-за перегрева (при остановке вентилятора) или из-за просчетов в конструкции самого БП (пример Microlab 420W). Сгоревший ДГС легко определить по потемневшему, шелушащемуся, обугленному изоляционному лаку. Сгоревший ДГС можно заменить на аналогичный или смотать новый. Если вы решите смотать новый ДГС, то следует использовать новое ферритовое кольцо, т.к. из за перегрева старое кольцо могло уйти по параметрам.




Трансформаторы.
Для проверки трансформаторов их следует предварительно выпаять. Их проверяют на короткозамкнутые витки, обрыв обмоток, потерю или изменение магнитных свойств сердечника.
Чтобы проверить трансформатор на предмет обрыва обмоток достаточно простого мультиметра, остальные неисправности трансформаторов определить гораздо сложнее и рассматривать их мы не будем. Иногда пробитый трансформатор можно определить визуально.


Опыт показывает, что трансформаторы выходят из строя крайне редко, поэтому их нужно проверять в последнюю очередь.

Профилактика вентилятора.


После удачного ремонта следует произвести профилактику вентилятора. Для этого вентилятор надо снять, разобрать, почистить и смазать.

Отремонтированный блок питания следует длительное время проверить под нагрузкой.
Прочитав эту статью, вы самостоятельно сможете произвести легкий ремонт блока питания, тем самым сэкономив пару монет и избавить себя от похода в сервис или магазин.