Защита от кз блока питания. Блок питания с защитой от кз

Внимание! Данная схема не рекомендуется к сборке! Есть более совершенная и надежная схема:

Представляю вашему вниманию просто импульсный блок питания на микросхеме IR2153.

Схема импульсного блока питания представляет собой стандартную схему из даташита. Отличие схемы от даташитной лишь в оригинальном способе запитки драйвера и простой, высокоэффективной защите от короткого замыкания и перегрузок.

Драйвер запитывается непосредственно от сети, через диод и гасящий резистор, а не после основного выпрямителя от шины +310В как это делают обычно. Такой способ запитки дает нам сразу несколько преимуществ:

1. Снижает мощность рассеиваемую на гасящем резисторе. Что снижает выделение тепла на плате и повышает общий КПД схемы.
2. В отличает от запитки по шине +310В обеспечивает более низкий уровень пульсаций напряжения питания драйвера.

Защита от перегрузок и КЗ выполнена на паре транзисторов 2N5551/5401. В качестве датчика тока в данной схеме используются резисторы включенные в исток нижнего плеча преобразователя. Это позволяет отказаться от трудоемкого процесса намотки токового трансформатора. С помощью R6 настраивается порог срабатывания защиты.

При КЗ или перегрузке, когда падение напряжения на R10 R11 достигает заданной величины, такой величины при котором на базе VT1 напряжение станет больше 0,6 - 0,7В, сработает защита и питание микросхемы будет шунтировано на землю. Что в свою очередь отключает драйвер и весь БП в целом. Как только перегрузка или КЗ устранено, питание драйвера возобновляется и блок питания продолжает работу в штатном режиме. Светодиод HL1 сигнализирует о срабатывании защиты.


Защита настраивается так. К выходу каждого плеча блока питания подключаются мощные 10 Ом"ные резисторы. Включается блок питания в сеть. Вращением движка R6 добиваемся того чтобы HL1 погас, а затем выставляем движок в такое положение, чтобы HL1 еще не горел, но при минимальном повороте движка в сторону уменьшения тока срабатывания защиты, светодиод загорался. При такой настройке защиты, она будет срабатывать при выходной мощности приблизительно 300Вт. Такой режим работы безопасен для данных ключей (IRF740) и драйвера.

Трансформатор намотан на сердечнике ER35/21/11. Первичная обмотка намотана в два провода 0,63мм2 и содержит 33 витка. Вторичная обмотка состоит из двух половинок, намотанных в три провода 0,63мм2 и каждая половинка содержит по 9 витков.


Печатная плата выполнена в формате . Распечатке на лазерном принтере зеркалить ее не нужно.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Драйвер питания и MOSFET

IR2153

1 Поиск в LCSC В блокнот
VT1 Биполярный транзистор

2N5551

1 Поиск в LCSC В блокнот
VT2 Биполярный транзистор

2N5401

1 Поиск в LCSC В блокнот
VT3, VT4 MOSFET-транзистор

IRF740

2 Поиск в LCSC В блокнот
VD1, VD2 Выпрямительный диод

HER108

2 Поиск в LCSC В блокнот
VDS1 Диодный мост

RS405L

1 Или другой до 1000В Поиск в LCSC В блокнот
VDS2 Выпрямительный диод

FR607

4 Или Шоттки с похожими характеристиками Поиск в LCSC В блокнот
VDR1 Термистор 250В 1 Поиск в LCSC В блокнот
R1, R5 Резистор

10 кОм

2 0.25 Вт Поиск в LCSC В блокнот
R2 Резистор

18 кОм

1 2 Вт Поиск в LCSC В блокнот
R3, R9 Резистор

100 Ом

2 0.25 Вт Поиск в LCSC В блокнот
R4 Резистор

15 кОм

1 0.25 Вт Поиск в LCSC В блокнот
R6 Переменный резистор 10 кОм 1 Поиск в LCSC В блокнот
R7, R8 Резистор

33 Ом

2 2 Вт Поиск в LCSC В блокнот
R10, R11 Резистор

0.2 Ом

2 Можно цементный аксиальный Поиск в LCSC В блокнот
С1-С3, С15, С16 Конденсатор 100 нФ 1000В 5 Пленочный Поиск в LCSC В блокнот
С4 Электролитический конденсатор 220 мкФ х 16В 1 Поиск в LCSC В блокнот
С5, С6 Конденсатор 1 нФ х 50В 2 Керамический Поиск в LCSC В блокнот
C7 Конденсатор 680 нФ 50В 1 Керамический

Этот блок питания прост для повторения, надежно защищен от случайных коротких замыканий, имеет плавную регулировку выходного напряжения от “нуля”, коллекторы транзисторов крепятся непосредственно к радиатору или корпусу (массе шасси).

Блок состоит из понижающего трансформатора, выпрямителя, сравнивающего устройства на операционном усилителе, который своим током потребления управляет составным транзистором и, узле защиты (рис. 1).

Понижающий трансформатор следует проверить на отдаваемую им мощность. Для этого первичную обмотку включают через предохранитель в сеть 220 вольт, предварительно заизолировав все открытые участки проводки. Переменное напряжение на вторичной обмотке не должно превышать 20 вольт, иначе после выпрямителя постоянное напряжение на электролитическом конденсаторе превысит 30 вольт, предельное для микросхемы операционного усилителя. Параллельно к выводам вторичной обмотки трансформатора подключают вольтметр и кратковременно накоротко замыкают мощным резистором сопротивлением 20 ом. Ток через резистор будет приблизительно 1 ампер. Обычно этого достаточно, но “дело вкуса”. Если показания вольтметра изменились незначительно и такая мощность устраивает, проверка закончена.

В выпрямителе лучше использовать микросборку КЦ-402 или КЦ-405 с любым буквенным индексом. Тогда постоянное напряжение на выходе будет более “красивым” благодаря одинаковым параметрам диодов моста. При потребности в больших токах блока выпрямительный мост собирается из отдельных мощных диодов.

Сравнивающее устройство (см. рис. 1) состоит из операционного усилителя DА1 и измерительного моста, образованного резисторами R5-R7 и стабилитроном VD2. Изменение напряжения на выходе блока питания приводит к разбалансу измерительного моста. Операционный усилитель усиливает напряжение разбаланса, изменяя напряжение на нагрузочном сопротивлении R4, но, так как эта нагрузка постоянна, то меняется ток, проходящий через микросхему. Этот ток, как нельзя лучше, подходит для управления регулирующим транзистором, так как транзистор, в общем, токовый элемент. Идея нестандартного включения операционного усилителя взята из . В сравнивающем устройстве можно применить любой операционный усилитель, особенно, если блок будет использоваться как нерегулируемый стабилизатор напряжения в каком-либо устройстве. Напряжение на выходе блока будет равно удвоенному напряжению стабилизации применяемого стабилитрона (это соотношение можно изменять резисторами R5 и R6). Если понадобится стабилизировать напряжение более 30 вольт, то необходимо установить стабилитрон VD3 (показан пунктиром), который погасит избыточное напряжение на ОУ. При этом сопротивление резистора R7 должно быть рассчитано на номинальный рабочий ток стабилитрона VD2. Операционный усилитель без обратной связи может возбудиться и тогда потребуется ввести конденсатор С4.

Не все операционные усилители подходят для регулируемого варианта блока (см. рис. 2). Нужно проследить, чтобы при уменьшении выходного напряжения до “нуля” потенциометром R7 процесс стабилизации не срывался. Иначе на выходе блока появится полное напряжение от выпрямителя.


Узел защиты состоит из шунта и тринистора 2У107А. Ток, проходящий через шунт, создает на нем пропорциональное падение напряжения. Как только напряжение достигнет определенного уровня, тринистор откроется и разбалансирует уравновешивающий мост R5-R8 (рис. 2). Тогда составной транзистор VT1-VT2 закроется и ток через нагрузку блока прекратится. Для возврата защиты в исходное состояние служит кнопка SB1. Здесь не следует применять тумблер или выключатель: можно забыть включить защиту. При необходимости получения максимального тока можно просто удерживать кнопку нажатой. В качестве шунта использован отрезок манганинового провода. Сечение и длина провода подбираются экспериментально в зависимости от требуемого тока и порога срабатывания защиты. Тринистор 2У107А по чувствительности, быстроте и надежности срабатывания оказался наиболее удачным выбором. Другие тринисторы не дали нужного результата.

Составной транзистор может быть собран из любых транзисторов при соблюдении общих правил, например: VT1-КТ808А, VT2-КТ815А. Подстроечное сопротивление R3 (рис.1) служит для настройки составного транзистора на максимальную отдачу тока. Для этого следует нагрузочным сопротивлением (например, 12 ом) кратковременно замыкать выход блока питания и установить R3 по меньшему отклонению выходного напряжения.

На основе изложенного был собран двуполярный лабораторный блок питания (см. рис. 3 и фото 1-3). Верхний по схеме стабилизатор удобно использовать без защиты. Вместе с нижним стабилизатором можно получить напряжение до 25 вольт, плюс защита от перегрузки. Транзистор VT1 необходимо изолировать от радиатора слюдяной прокладкой.

Детали блока питания собраны на печатной плате размером 80х110 мм. Корпус блока сделан из одностороннего фольгированного стеклотекстолита размером 235х100х160 мм. Детали корпуса скреплены между собой оловом. Верхняя крышка корпуса укреплена треугольными косынками. Передняя и задняя стенки скреплены с поддоном прямоугольниками. В них просверлены отверстия и изнутри припаяны гайки М3 для крепления крышки.


Фальшпанель крепится к передней панели с помощью винта и гайки через отверстие, просверленное посередине. На фальшпанель выведены светодиоды: красный - загорается при срабатывании защиты, зеленый - указывает о включенном состоянии блока в сеть. Для вольтметра и миллиамперметра вырезаны отверстия. Миллиамперметр отрегулирован шунтом на полное отклонение стрелки и срабатывание защиты при токе 300 миллиaмпер. Такая защита срабатывает мгновенно и спасла не одно устройство.

На задней панели находятся радиаторы с транзисторами VT1 и VT3, предохранитель, клеммы выходного напряжения, тумблер включения блока питания в сеть, тумблер переключения вольтметра, кнопка “Сброс защиты”.

Литература:

1. Журнал “Радио”, 1986 г., номер 9, стр. 48.

М. Файзуллин (UA9WNH/9), Тюменская обл., г. Нижневартовск

Устройств необходим блок питания (БП), в котором имеется регулировка выходного напряжения и возможность регулирования уровня срабатывания защиты от превышения по току в широких пределах. При срабатывании защиты, нагрузка (подключенное устройство) должна автоматически отключаться.

Поиск в интернете дал несколько подходящих схем блоков питания. Остановился на одной из них. Схема проста в изготовлении и наладке, состоит из доступных деталей, выполняет заявленные требования.

Предлагаемый к изготовлению блок питания выполнен на базе операционного усилителя LM358 и имеет следующие характеристики :
Входное напряжение, В - 24...29
Выходное стабилизированное напряжение, В - 1...20 (27)
Ток срабатывания защиты, А - 0,03...2,0

Фото 2. Схема БП

Описание работы БП

Регулируемый стабилизатор напряжения собран на операционном усилителе DA1.1. На вход усилителя (вывод 3) поступает образцовое напряжение с движка переменного резистора R2, за стабильность которого отвечает стабилитрон VD1, а на инвертирующий вход (вывод 2) напряжение поступает с эмиттера транзистора VT1 через делитель напряжения R10R7. С помощью переменного резистора R2, можно изменять выходное напряжение БП.
Блок защиты от перегрузок по току выполнен на операционном усилителе DA1.2, он сравнивает напряжения на входах ОУ. На вход 5 через резистор R14 поступает напряжение с датчика тока нагрузки - резистора R13. На инвертирующий вход (вывод 6) поступает образцовое напряжение, за стабильность которого отвечает диод VD2 с напряжением стабилизации около 0,6 в.

Пока падение напряжения, создаваемое током нагрузки на резисторе R13, меньше образцового, напряжение на выходе (вывод 7) ОУ DA1.2 близко к нулю. В том случае, если ток нагрузки превысит допустимый установленный уровень, увеличится напряжение на датчике тока и напряжение на выходе ОУ DA1.2 возрастет практически до напряжения питания. При этом включится светодиод HL1, сигнализируя о превышении, откроется транзистор VT2, шунтируя стабилитрон VD1 резистором R12. Вследствие чего, транзистор VT1 закроется, выходное напряжение БП уменьшится практически до нуля и нагрузка отключится. Для включения нагрузки нужно нажать на кнопку SА1. Регулировка уровня защиты выполняется с помощью переменного резистора R5.

Изготовление БП

1. Основу блока питания, его выходные характеристики определяет источник тока – применяемый трансформатор. В моем случае нашел применение тороидальный трансформатор от стиральной машины. Трансформатор имеет две выходные обмотки на 8в и 15в. Соединив обе обмотки последовательно и добавив выпрямительный мост на имеющихся под рукой диодах средней мощности КД202М, получил источник постоянного напряжения 23в, 2а для БП.


Фото 3. Трансформатор и выпрямительный мост.

2. Другой определяющей частью БП является корпус прибора. В данном случае нашел применение детский диапроектор мешающийся в гараже . Удалив лишнее и обработав в передней части отверстия для установки показывающего микроамперметра, получилась заготовка корпуса БП.


Фото 4. Заготовка корпуса БП

3. Монтаж электронной схемы выполнен на универсальной монтажной плате размером 45 х 65 мм. Компоновка деталей на плате зависит от размеров, найденных в хозяйстве компонентов. Вместо резисторов R6 (настройка тока срабатывания) и R10 (ограничение максимального напряжения на выходе) на плате установлены подстроечные резисторы с увеличенным в 1,5 раза номиналом. По окончании настройки БП их можно заменить на постоянные.



Фото 5. Монтажная плата

4. Сборка платы и выносных элементов электронной схемы в полном объеме для испытания, настройки и регулировки выходных параметров.



Фото 6. Узел управления БП

5. Изготовление и подгонка шунта и дополнительного сопротивления для использования микроамперметра в качестве амперметра или вольтметра БП. Дополнительное сопротивление состоит из последовательно соединенных постоянного и подстроечного резисторов (на фото сверху). Шунт (на фото ниже) включается в основную цепь тока и состоит из провода с малым сопротивлением. Сечение провода определяется максимальным выходным током. При измерении силы тока, прибор подключается параллельно шунту.



Фото 7. Микроамперметр, шунт и дополнительное сопротивление

Подгонка длины шунта и величины дополнительного сопротивления производится при соответствующем подключении к прибору с контролем на соответствие по мультиметру. Переключение прибора в режим Амперметр/Вольтметр выполняется тумблером в соответствии со схемой:



Фото 8. Схема переключения режима контроля

6. Разметка и обработка лицевой панели БП, монтаж выносных деталей. В данном варианте на лицевую панель вынесен микроамперметр (тумблер переключения режима контроля A/V справа от прибора), выходные клеммы, регуляторы напряжения и тока, индикаторы режима работы. Для уменьшения потерь и в связи с частым использованием, дополнительно выведен отдельный стабилизированный выход 5 в. Для чего напряжение, от обмотки трансформатора на 8в, подается на второй выпрямительный мост и типовую схему на 7805 имеющую встроенную защиту.


Фото 9. Лицевая панель

7. Сборка БП. Все элементы БП устанавливаются в корпус. В данном варианте, радиатором управляющего транзистора VT1 служит алюминиевая пластина толщиной 5 мм, закрепленная в верхней части крышки корпуса, служащего дополнительным радиатором. Транзистор закреплен на радиаторе через электроизолирующую прокладку.



Фото 10. Сборка БП без крышки


Фото 11. Общий вид БП.

Детали:

Операционный усилитель LM358N имеет в своем составе два ОУ.

Транзистор VT1 можно заменить на любой из серий КТ827, КТ829. Транзистор VT2 любой из серии КТ315. Стабилитрон VD1 можно использовать любой, с напряжением стабилизации 6,8…8,0в и током 3…8 мА. Диоды VD2-VD4 из серии КД521 или КД522Б. Конденсаторы С3, C4 - пленочные или керамические. Оксидные конденсаторы: C1 - К50-18 или аналогичный импортный, остальные - из серии К50-35. Постоянные резисторы серии МЛТ, переменные - СП3-9а.

Налаживание блока питания - движок переменного резистора R2 перемещают в верхнее по схеме положение и измеряют максимальное выходное напряжение, устанавливают его равным 20 В, подбирая резистор R10. После этого подключают к выходу нагрузку и производят замеры тока срабатывания защиты. Для уменьшения уровня срабатывания защиты, уменьшить сопротивление резистора R6. Для увеличения максимального уровня срабатывания защиты - уменьшить сопротивление резистора R13 - датчика тока нагрузки.