Как можно определить кпд в электродвигателе. Кпд электродвигателей и что влияет на его значение

Электрические двигатели имеют высокий коэффициент полезного действия (КПД), но все же он далек от идеальных показателей, к которым продолжают стремиться конструкторы. Все дело в том, что при работе силового агрегата преобразование одного вида энергии в другой проходит с выделение теплоты и неминуемыми потерями. Рассеивание тепловой энергии можно зафиксировать в разных узлах двигателя любого типа. Потери мощности в электродвигателях являются следствием локальных потерь в обмотке, в стальных деталях и при механической работе. Вносят свой вклад, пусть и незначительный, дополнительные потери.

Магнитные потери мощности

При перемагничивании в магнитном поле сердечника якоря электродвигателя происходят магнитные потери. Их величина, состоящая из суммарных потерь вихревых токов и тех, что возникают при перемагничивании, зависят от частоты перемагничивания, значений магнитной индукции спинки и зубцов якоря. Немалую роль играет толщина листов используемой электротехнической стали, качество ее изоляции.

Механические и электрические потери

Механические потери при работе электродвигателя, как и магнитные, относятся к числу постоянных. Они складываются из потерь на трение подшипников, на трение щеток, на вентиляцию двигателя. Минимизировать механические потери позволяет использование современных материалов, эксплуатационные характеристики которых совершенствуются из года в год. В отличие от них электрические потери не являются постоянными и зависят от уровня нагрузки электродвигателя. Чаще всего они возникают вследствие нагрева щеток, щеточного контакта. Падает коэффициент полезного действия (КПД) от потерь в обмотке якоря и цепи возбуждения. Механические и электрические потери вносят основной вклад в изменение эффективности работы двигателя.

Добавочные потери

Добавочные потери мощности в электродвигателях складываются из потерь, возникающих в уравнительных соединениях, из потерь из-за неравномерной индукции в стали якоря при высокой нагрузке. Вносят свой вклад в общую сумму добавочных потерь вихревые токи, а также потери в полюсных наконечниках. Точно определить все эти значения довольно сложно, поэтому их сумму принимают обычно равной в пределах 0,5-1%. Эти цифры используют при расчете общих потерь для определения КПД электродвигателя.

КПД и его зависимость от нагрузки

Коэффициент полезного действия (КПД) электрического двигателя это отношение полезной мощности силового агрегата к мощности потребляемой. Этот показатель у двигателей, мощностью до 100 кВт находится в пределах от 0,75 до 0,9. для более мощных силовых агрегатов КПД существенно выше: 0,9-0,97. Определив суммарные потери мощности в электродвигателях можно достаточно точно вычислить коэффициент полезного действия любого силового агрегата. Этот метод определения КПД называется косвенным и он может применяться для машин различной мощности. Для маломощных силовых агрегатов часто используют метод непосредственной нагрузки, заключающийся в измерениях потребляемой двигателем мощности.

КПД электрического двигателя не является величиной постоянной, своего максимума он достигает при нагрузках около 80% мощности. Достигает он пикового значения быстро и уверенно, но после своего максимума начинает медленно уменьшаться. Это связывают с возрастанием электрических потерь при нагрузках, более 80% от номинальной мощности. Падение коэффициента полезного действия не велико, что позволяет говорить о высоких показателях эффективности электродвигателей в широком диапазоне мощностей.

Инструкция

Определение КПД двигателя внутреннего сгоранияНайдите в технической документации мощность данного двигателя внутреннего сгорания . Залейте в него топливо, это может быть бензин или дизельное топливо, и заставьте проработать на максимальных оборотах некоторое время, которое замеряйте с помощью секундомера, в секундах . Слейте остатки и определите объем сгоревшего топлива, отняв от первоначального объема конечный. Найдите его массу, умножив объем, переведенный в м³, на его плотность в кг/ м³.

Для определения КПД мощность двигателя умножьте на время и поделите на произведение массы затраченного топлива на его удельную теплоту сгорания КПД =P t/(q m). Чтобы получить результат в процентах , получившееся число умножьте на 100.

Если нужно измерить КПД двигателя автомобиля, а мощность его неизвестна, но известна масса, для определения полезной работы разгонитесь на нем из состояния покоя до скорости 30 м/с (если это возможно), измерив массу затраченного топлива. Затем массу автомобиля умножьте на квадрат его скорости, и поделите на удвоенное произведение массы затраченного топлива на удельную теплоту его сгорания КПД =М v²/(2 q m).

Определение КПД электродвигателя Если известна мощность электродвигателя , то подключите его к источнику тока с известным напряжением, добейтесь максимальных оборотов и тестером , измерьте ток в цепи. Затем мощность поделите на произведение силы тока и напряжения КПД =P/(I U).

Если мощность двигателя неизвестна, прикрепите к его валу шкив, и поднимите на известную высоту, груз известной массы. Измерьте тестером напряжение и силу тока на двигателе , а так же время подъема груза. Затем произведение массы груза на высоту подъема и число 9,81 поделите на произведение напряжения, силы тока и времени подъема в секундах КПД =m g h/(I U t).

Обратите внимание

Во всех случаях КПД должен быть меньше 1 в дольных величинах или 100 %.

Чтобы найти коэффициент полезного действия любого двигателя , нужно полезную работу поделить на затраченную и умножить на 100 процентов. Для теплового двигателя найдите данную величину по отношению мощности, умноженной на длительность работы, к теплу, выделившемуся при сгорании топлива. Теоретически КПД теплового двигателя определяется по соотношению температур холодильника и нагревателя. Для электрических двигателей найдите отношение его мощности к мощности потребляемого тока.

Вам понадобится

  • паспорт двигателя внутреннего сгорания (ДВС), термометр, тестер

Инструкция

Определение КПД ДВС Найдите в технической документации данного конкретного двигателя его мощность. Залейте в его бак некоторое количество топлива и запустите двигатель, чтобы он проработал некоторое время на полных оборотах, развивая максимальную мощность, указанную в паспорте. С помощью секундомера засеките время работы двигателя , выразив его в секундах. Через некоторое время остановите двигатель, и слейте остатки топлива. Отняв от начального объема залитого топлива конечный объем, найдите объем израсходованного топлива. Используя таблицу , найдите его плотность и умножьте на объем, получив массу израсходованного топлива m=ρ V. Массу выразите в килограммах. В зависимости от вида топлива (бензин или дизельное топливо), определите по таблице его удельную теплоту сгорания. Для определения КПД максимальную мощность умножьте на время работы двигателя и на 100%, а результат последовательно поделите на его массу и удельную теплоту сгорания КПД =P t 100%/(q m).

Для идеальной тепловой машины , можно применить формулу Карно. Для этого узнайте температуру сгорания топлива и измерьте температуру холодильника (выхлопных газов) специальным термометром. Переведите температуру, измеренную в градусах Цельсия в абсолютную шкалу, для чего к значению прибавьте число 273. Для определения КПД от числа 1 отнимите отношение температур холодильника и нагревателя (температуру сгорания топлива) КПД =(1-Тхол/Тнаг) 100%. Данный вариант расчета КПД не учитывает механическое трение и теплообмен с внешней средой.

Определение КПД электродвигателя Узнайте номинальную мощность электродвигателя , по технической документации. Подключите его к источнику тока, добившись максимальных оборотов вала, и с помощью тестера измерьте значение напряжения на нем и силу тока в цепи. Для определения КПД заявленную в документации мощность, поделите на произведение силы тока на напряжение, результат умножьте на 100% КПД =P 100%/(I U).

Видео по теме

Обратите внимание

Во всех расчетах КПД должен быть меньше 100%.

Некоторым автомобилистам со временем надоедает ездить на стоковом автомобиле. Поэтому они начинают тюнинговать своего железного, то есть вносить те или иные иные изменения в техническую конструкцию, чтобы таким образом увеличить возможности автомобиля. Однако после модернизации нужно знать, сколько мощности прибавилось. Как же измерить мощность двигателя?



Вам понадобится

Инструкция

Есть несколько способов, как измерить мощность двигателя. Сразу же стоит отметить, что все являются неточными, то есть имеют некую погрешность. Можно установить специальное электронное оборудование, которое будет следить за параметрами работы вашего двигателя в режиме онлайн . Такое оборудование имеет среднюю погрешность. Однако у него есть минус - его большая стоимость. Также ноутбук . Загрузите программу. Необходим будет проехать несколько раз на разной скорости. Программа запомнит показатели, а потом автоматически вычислит мощность силового агрегата и укажет погрешность вычислений.

Самый точный способ измерить мощность двигателя - загнать автомобиль на динамометрический стенд. Для этого необходимо найти сервис, в котором имеется такая установка. Загоните ваш автомобиль на стенд передом к вентилятору. Колеса должны быть ровно между двух барабанов. Закрепите специальные ремни за несущую конструкцию авто. Подключите аппаратуру к машине через диагностический разъем. На выхлопную трубу наденьте гофрированный каркас, который будет выводить газы из бокса. Включите вентилятор, который будет имитировать сопротивление встречного воздуха. Теперь нужно максимально разогнать автомобиль. Параллельно следите за состоянием соединяющих ремней. Сделайте несколько попыток, чтобы исключить вероятность ошибки . После каждой попытки компьютер выдаст вам распечатку, где будет указана максимальная скорость и мощность.

Видео по теме

В электродвигателе при преобразовании электрической энергии в механическую часть энергии теряется в виде тепла, которое сразу рассеивается в различных частях мотора и частично – в окружающей среде. Все потери делятся на три вида: механические, обмоточные и потери в стали. Причем существуют еще и добавочные потери.

Расчет потерь в электрическом двигателе

  • Для расчета потерь в электродвигателе используют специальные формулы. На диаграммах можно заметить, что часть мощности, которая подается к статору из электросети, передается на ротор через зазор. Рэм – это электромагнитная мощность.
  • Потери мощности непосредственно в статоре – это слагаемое потерь на вихревые токи и на частичное перемагничивание сердечника самого статора. Если рассматривать потери в стали, они настолько незначительные, что редко принимаются во внимание. Объяснить такое можно достаточно просто. Скорость вращения самого статора электродвигателя значительно выше скорости, создаваемой магнитным потоком. Так происходит только в том случае, если скорость вращения ротора полностью соответствует техническим характеристикам электромотора, заявленным производителем.
  • Механическая мощность на валу ротора, как правило, меньше мощности Рэм ровно на количество потерь в обмотке. Механические потери в основном приходятся на определенное трение в подшипниках, а также на трение щеток, что характерно для электродвигателей с фазными роторами и на трение вращающихся частей, встречающих воздушную преграду.
  • Добавочные потери в асинхронных электродвигателях обусловлены наличием зубчатости статора и ротора, вихревых потоков в разных узлах электродвигателя и иными потерями. При расчете такие потери уменьшают КПД электродвигателя на половину процента от номинальной мощности.

КПД электродвигателя в расчетах

Коэффициент полезного действия асинхронного электродвигателя уменьшается на суммарность потерь мощности, которые рассчитываются по формуле. Общая же сумма потерь напрямую зависит от нагрузки электродвигателя. Чем выше нагрузка, тем больше потерь и меньше КПД.

Конструирование асинхронного электродвигателя производится с учетом всех потерь при максимальной нагрузке. Поэтому данный диапазон может быть достаточно широким. Большинство асинхронных электромоторов имеет коэффициент полезного действия 80-90%. Мощные моторы выпускают с КПД от 90 до 96%.

Дефицит электроэнергии отмечается во многих странах, в том числе промышленно развитых и имеющих большой энергетический потенциал. Проблема встала настолько остро, что требование увеличить КПД электродвигателей, используемых в промышленности, прозвучало с самых высоких трибун. Стандарты на минимальную энергоэффективность были приняты в США и ЕС, других странах. Использование оборудования, КПД электродвигателей которого будет не менее 95%, способно не только сделать рентабельным многие производства за счет экономии средств на оплату электроэнергии, но и улучшить экологическую ситуацию во многих регионах планеты. От чего же зависит этот коэффициент?

Любой электродвигатель потребляет определенное количество электрической энергии и отдает энергию механическую. Сравнение их величин и называется КПД электродвигателей, чем выше этот показатель, тем эффективнее работает мотор. Добиться 100% отдачи невозможно, а вот приблизиться к этой величине максимально близко - задача выполнимая. Сегодня большинство силовых агрегатов имеют КПД в районе 80-90%. Потери складываются из самых разных факторов, в числе которых основными являются следующие:

  • магнитные потери в статоре;
  • вихревые токи;
  • перемагничивание ротора;
  • электрические потери в обмотках статора и ротора;
  • трение подшипников, геометрия зубьев;
  • толщина изолирующего слоя обмотки.

Все это влияет на КПД электродвигателя постоянного тока, снижает эффективность самых современных асинхронных моторов. Так же на уменьшение КПД оказывает влияние необходимость охлаждения двигателя, ведь вентилятор так же потребляет электрическую энергию. Не следует забывать и о нагрузке: КПД двигателя на холостых оборотах равен нулю, а своего максимума обычно коэффициент достигает на ¾ нагрузки.

Как повысить КПД электродвигателя

Увеличение КПД асинхронными двигателями может быть достигнута за счет использования более качественных материалов и усовершенствования конструкции. Это позволить снизить потери и эффективность двигателя станет выше. Например, чем чище медь в обмотке, тем меньше ее сопротивление, а более качественная магнитная сталь позволит уменьшить потери на перемагничивание. В результате будут меньше потери мощности и двигатель будет греться не так сильно. Отсюда вытекает заключение, что на его охлаждение будет тратиться меньше энергии, потребляемой вентилятором.

Позволит повысить КПД двигателя более тонкий слой изоляции обмоток, работа над такими материалами ведется постоянно. Еще одним перспективным направлением является работа над изменением геометрии зубьев двигателя, которая позволит увеличить концентрацию магнитного поля и избежать потерь за счет рассеивания энергии. Расчет КПД электродвигателя обычно учитывает и асимметрию тока. Если на разных фазах напряжение существенно отличается, то это может снизить коэффициент на 5-7%, а это значительная величина. Устранение проблем электросети, таким образом, становится прекрасным способом увеличить КПД используемого оборудования.

Сосредотачиваться на какой-то одной проблеме при разработке двигателя - это путь в никуда. Только комплексное решение проблем позволит повысить КПД до высоких значений. При этом владельцы производственного оборудования не должны забывать, что работать эффективный двигатель должен с не менее экономичными трансмиссиями. Если электродвигатель с КПД в 95% подключить к изношенной передаче, выдающей максимум 50-60%, то об экономии электроэнергии можно будет забыть.

Российский изобретатель Владимир Чернышов представил на суд публики описание модели двигателя на основе постоянного магнита, КПД которого превышает 100%.

Давно уже не секрет, что двигатели с КПД больше 100% считаются невозможными. Их существование противоречит основному закону физики - закону о сохранении энергии.

Энергия не может появиться ниоткуда и исчезнуть в никуда. Она лишь может преобразовываться из одного вида энергии в другую. Например, из электрической в световую (с помощью электрической лампы) или из механической в электрическую (с помощью электрогенератора тока).

Конечно, это справедливо. Любому двигателю нужен источник энергии. Двигателю внутреннего сгорания - бензин, электродвигателю - источник электроэнергии, например, аккумуляторы. Но бензин не вечен, его запас нужно постоянно пополнять, да и аккумуляторы требуют периодической подзарядки.

Однако если использовать источник энергии, который бы не нуждался в пополнении, то есть неисчерпаемый источник энергии , двигатель с КПД больше 100% вполне мог бы иметь право на существование.

На первый взгляд существование такого источника в природе невозможно. Однако это только на первый, неподготовленный, взгляд.

Возьмем, к примеру, гидроэлектростанцию. Вода, собранная в огромное водохранилище, падает с большой высоты плотины и вращает гидротурбину, которая, в свою очередь, вращает электрогенератор. Электрогенератор вырабатывает электроэнергию.

Вода падает под действием гравитации Земли. При этом совершается работа по выработке электроэнергии, хотя гравитация Земли, являясь источником энергии притяжения, не уменьшается. Затем вода под действием излучения Солнца и все той же гравитации снова возвращается в водохранилище. Солнце, конечно, не вечное, но на пару миллиардов лет его хватит. Ну а гравитация опять совершает работу, вытягивая влагу из атмосферы, и опять не уменьшаясь ни на йоту. По своей сути гидроэлектростанция является гидроэлектрогенератором с КПД больше 100%, только громоздким и дорогим в обслуживании. Тем не менее, работа гидроэлектростанций наглядно показывает то, что создание двигателя с КПД больше 100% вполне осуществимо, ведь не только гравитация может служить источником неисчерпаемой энергии.

Как известно, постоянный магнит ниоткуда не получает энергию, а его магнитное поле не расходуется, когда им что-либо притягиваешь. Если постоянный магнит притянул к себе железный предмет, он тем самым совершил работу, но его сила при этом не уменьшилась. Это уникальное свойство постоянного магнита позволяет использовать его в качестве источника неисчерпаемой энергии.

Конечно, создание двигателя с КПД больше 100% на основе постоянного магнита очень смахивает на создание пресловутого «вечного двигателя», модели коего заполонили страницы интернета, но это не так. Магнитный двигатель не вечный, но даровой. Рано или поздно его детали износятся и потребуют замены. При этом сам источник энергии - постоянный магнит - практически вечен.

Правда, некоторые специалисты утверждают, что постоянный магнит постепенно теряет свою притягивающую силу в результате так называемого старения. Это утверждение неверно, но даже если бы это было так, он не изнашивается механически и вернуть его в прежнее, рабочее состояние можно всего одним магнитным импульсом. А производители современных постоянных магнитов гарантируют их неизменное состояние в течение как минимум 10 лет.

Двигатель, требующий перезарядки один раз в десять лет и при этом дающий чистую и безопасную энергию, вполне может претендовать на роль спасителя человеческой цивилизации от неизбежного энергетического Армагеддона.

Попытки создания магнитного двигателя с КПД больше 100% делались неоднократно. К сожалению, пока никому не удалось создать чего-либо серьезного. Хотя потребность в таком двигателе в наше время растет с небывалой скоростью. А если есть спрос, то предложения обязательно будут.

Одна из моделей такого двигателя и предлагается на суд специалистов в области электротехники и энтузиастов альтернативной энергетики.

В принципе, ничего сложного в модели магнитного двигателя нет. Однако создание такой модели весьма не просто. Требуются достаточно серьезное станочное оборудование и высокое качество производства.

На рисунке схематически


На схеме изображена конструкция магнитного двигателя с КПД больше 100%.

  1. Постоянные магниты неодим-железо-бор с максимально возможной индукцией магнитного поля.
  2. Немагнитный, диэлектрический ротор. Материал ротора - текстолит или стеклотекстолит.
  3. Статор. Или подшипниковые щиты. Материал - алюминий.
  4. Контактные кольца. Материал - медь.
  5. Электромагнитные катушки. Соленоиды, навитые тонким медным проводом.
  6. Контактные щетки. Материал электрографит.
  7. Диск управления подачи электрического импульса на электромагнитные катушки.
  8. Оптопары на просвет. Датчики управления подачи электрического импульса на электромагнитные катушки.
  9. Шпильки статора, регулирующие зазор между постоянными магнитами и электромагнитными катушками.
  10. Вал ротора. Материал - сталь.
  11. Замыкающие магнитопроводы. Кольца из мягкого железа, усиливающие силу постоянных магнитов.


Постоянные магниты расположены в подшипниковых щитах по диаметру с чередующейся полярностью. Электромагнитные катушки расположены в роторе аналогичным способом.

Принцип работы магнитного двигателя основан на взаимодействии постоянного и электромагнитного полей.

Если по катушке намотанной медным проводом (соленоидом) пропустить электрический ток, то в нем возникнет магнитное поле, которое станет взаимодействовать с магнитным полем постоянных магнитов. Другими словами, катушка втянется в зазор между постоянными магнитами.



Если ток выключить, катушка выйдет из зазора между постоянными магнитами без сопротивления.

По своей сути магнитный двигатель является синхронным электромагнитным двигателем, только многополюсным, без использования железа в электромагнитных катушках. Железо хоть и усиливает магнитную силу электромагнитной катушки, в этом двигателе использоваться не может, поскольку остаточная индукция неодимовых магнитов достигает 1,5 Тл, и на перемагничивание железных сердечников электромагнитных катушек, которые намагничиваются под действием постоянных магнитов, затрачивается огромное количество энергии.

А катушка без сердечника будет взаимодействовать с постоянным магнитом при любых (даже самых малых) значениях электрического тока. И будет абсолютно инертна к постоянным магнитам, если тока в катушке не будет.

Конечно, конструкция электромагнитного двигателя, в котором применяются катушки медного провода без железного сердечника, не нова. Есть масса вариантов и масса оригинальных конструкций, в которых используется принцип взаимодействия постоянного тока и электромагнитной катушки без сердечника. Но ни одна конструкция не имеет КПД больше 100%. Причина этого не в конструкции двигателя, а в неправильном понимании природы как постоянного магнита, так и электрического тока.

Дело в том, что до сих пор магнитное поле постоянного магнита считается сплошным и однородным. И электромагнитное поле соленоида также считается однородным и сплошным. К сожалению, это большое заблуждение. Так называемое магнитное поле постоянного магнита в принципе не может быть сплошным, поскольку сам магнит имеет составную структуру из множества спрессованных в одно тело доменов (элементарных магнитов).


По своей сути домены - это те же магниты, только очень маленькие. А если взять два обычных магнита, положить их на стол одноименными полюсами вниз и попытаться сблизить, то нетрудно заметить, что они отталкиваются друг от друга. Так же отталкиваются и их магнитные поля. Так как же магнитное поле постоянного магнита может быть сплошным? Однородным да, но не сплошным.

Магнитное поле постоянного магнита состоит из множества отдельных магнитных полей размером порядка 4 микрон. Их называют силовыми линиями магнитного поля, и еще из школьной программы по физике все знают, как их обнаружить с помощью железных опилок и листа бумаги. На самом деле железные опилки сами становятся доменами и продолжают постоянный магнит. Но поскольку они не закреплены механически, как в толще постоянного магнита, они расходятся веерообразно, что еще раз подтверждает утверждение о том, что магнитное поле постоянного магнита не является сплошным.

Но если магнитное поле постоянного магнита состоит из множества магнитных полей, то и электромагнитное поле соленоида тоже не может быть сплошным. Оно так же должно состоять из множества отдельных магнитных полей. Однако в катушке медного провода нет доменов, есть проводник и электрический ток. А электрический ток - это поток свободных электронов. Каким образом этот электронный поток может создавать магнитное поле?

Магнитный момент электронов обусловлен собственным вращением электронов - спином. Если электроны вращаются в одном направлении и в одной плоскости, их магнитные моменты суммируются. Поэтому они ведут себя подобно доменам в постоянном магните, выстраиваясь в электронные столбы и создавая отдельное электромагнитное поле. Количество таких электромагнитных полей зависит от напряжения электрического тока, приложенного к проводнику.


К сожалению, пока не установлена количественная связь между напряжением и числом магнитных полей. Нельзя сказать, что напряжение в 1 Вольт создает одно поле. Над решением этой задачи еще предстоит поломать голову ученым. Но то, что связь есть, установлено определенно. Определенно установлено и то, что одно магнитное поле постоянного магнита может соединиться только с одним магнитным полем соленоида. Причем наиболее эффективна эта связь будет тогда, когда толщина этих полей совпадет.

Толщина магнитных полей постоянного магнита составляет порядка 4 микрон, поэтому площадь магнитного полюса не должна быть большой, иначе придется пускать на обмотку соленоида слишком большое напряжение.

Возьмем, например, магнит, у которого площадь полюса равна 1 квадратному сантиметру. Разделим его на 4 микрометра. 1/0,0004=2500.

То есть для эффективной работы катушки с магнитом, у которого площадь магнитного полюса 1 квадратный сантиметр, необходимо подать на эту катушку электрический ток с напряжением 2500 Вольт. При этом сила тока должна быть очень маленькой - примерно 0,01 Ампера. Точные значения силы тока еще не установлены, но известно одно: чем меньше сила тока, тем выше КПД. Очевидно, причиной этому является то обстоятельство, что электрическая энергия переносится электронами. Однако один электрон не может перенести большое количество энергии. Чем больше энергии переносит электрон, тем больше потерь от столкновения электронов с атомами в кристаллической решетке проводника электротока.

Если же в работе участвует множество слабо возбужденных электронов, то энергия между ними распределяется поровну и электроны гораздо свободнее проскальзывают между атомами кристаллической решетки проводника. Вот почему по одному и тому же проводнику ток малой силы и высокого напряжения можно передать с гораздо меньшими потерями на сопротивление, чем ток малого напряжения и большой силы.

Таким образом, для эффективного взаимодействия электромагнитной катушки без сердечника с постоянным магнитом необходимо навить катушку тонким проводом (порядка 0,1 мм) с большим количеством витков (около 6 000) и подать на эту катушку электроток большого напряжения. Только при таких условиях двигатель получит возможность иметь КПД больше 100%. Причем чем меньше сила тока в электромагнитных катушках, тем выше КПД. Более того, электрический ток на катушку можно подавать короткими импульсами - в тот момент, когда катушка приблизилась к постоянному магниту на минимальное расстояние. Это еще больше повысит эффективность работы двигателя. Но самую большую эффективность двигатель приобретет в том случае, когда электромагнитные катушки закольцевать с конденсаторами, создав некоторое подобие колебательного контура, широко применяемого в радиоэлектронике для создания электромагнитных волн. Ведь по закону о сохранении энергии электроток не может исчезнуть бесследно. В колебательном контуре он всего лишь перемещается из электромагнитной катушки в конденсатор и обратно, создавая при этом электромагнитные волны. При этом потери электроэнергии минимальные и обусловлены только сопротивлением материала. А на создание электромагнитных волн энергия практически не тратится. По крайней мере, так утверждает учебник по физике. И если использовать это явление на взаимодействие с постоянными магнитами, получим механическую энергию, практически не потратив на это электрическую.

В общем, можно констатировать, что секрет двигателя с КПД больше 100% не в конструкции двигателя, а в принципе взаимодействия постоянного магнита и электромагнитной катушки с электрическим током.

Возьмем, к примеру, автомобильный двигатель внутреннего сгорания. Есть автомобили, двигатели которых имеют простейшую конструкцию и потребляют 20 литров топлива на 100 километров пути, при этом обладая мощностью каких-то 70 лошадиных сил. А есть автомобили, двигатели которых увешаны электроникой, потребляющие всего 10 литров топлива на 100 километров пути, но имеющие мощность до 200 лошадиных сил. Хотя принцип действия у всех автомобилей одинаков. Разница лишь в том, как используется этот принцип действия. Можно просто залить порцию топлива в цилиндр двигателя и как попало поджечь его, а можно подготовить высококачественную топливную смесь, вовремя впрыснуть е в цилиндр и вовремя поджечь.

В электромагнитном двигателе цилиндром служит электромагнитная катушка, а топливом - электрический ток. Но для двигателей внутреннего сгорания придуманы различные виды топлива. От дизельного до высокооктанового. И для каждого типа двигателя предназначен свой тип топлива. Двигатель, рассчитанный на работу с высокооктановым бензином, не может работать на дизельном топливе. И даже работая на низкооктановом бензине, он не сможет дать тех технических возможностей, которые от него требуют.

У электрического тока тоже два параметра - cила тока и напряжение. Электрический ток высокого напряжения можно сравнить с высокооктановым бензином. Пуская на катушку электрический ток высокого напряжения, необходимо следить, чтобы смесь не была слишком обогащенной. То есть сила тока должна быть достаточной, но не превышала необходимой, иначе излишняя энергия просто вылетит в трубу и значительно уменьшит КПД двигателя.

Конечно, сравнивать электромагнитный двигатель с двигателем внутреннего сгорания не совсем уместно. Повысить мощность двигателя внутреннего сгорания можно, увеличив давление в камере сгорания. С электромагнитным двигателем такой фокус не удастся. Можно увеличить длину импульса в электромагнитной катушке. Мощность, конечно, увеличится, но и КПД упадет.

Увеличивать мощность электромагнитного двигателя следует лишь путем увеличения количества полюсов. Это словно собачья упряжка: одно животное, конечно, реальной силы не имеет, но два десятка - это уже что-то весьма серьезное. Поэтому в двигателе применяется многополюсная система, все катушки в которой подключены параллельно. В мощных двигателях количество полюсов может исчисляться сотнями.



В небольшой модели двигателя гораздо эффективнее применять систему, в которой электромагнитные катушки расположены в роторе. В данном случае катушка работает одновременно с двумя магнитами. Это в два раза увеличивает эффективность работы катушки даже при том, что импульс на катушки предается через щеточный узел.

В больших двигателях с многороторной системой гораздо эффективнее применять систему с постоянными магнитами на роторе. Конструкция упрощается, а катушки, которые работают только на одну сторону, находятся только на крайних статорах. Катушки же внутренних статоров работают сразу на две стороны.

В природе самым сильным животным является слон, но он много ест и вес, который он способен поднять, значительно меньше его собственного веса. Поэтому КПД его работы очень низок.

Маленький муравей ест очень мало, а вес, который он может поднять, превышает его собственный вес в 20 раз. Чтобы получить упряжку с большим КПД, нужно запрягать в нее не слона, а кучу муравьев!

Владимир Чернышов