Что называют электрическим зарядом

Происходящие в природе физические процессы не всегда объясняются действием законов молекулярно-кинетической теории, механики либо термодинамики. Существуют еще электромагнитные силы, которые действуют на расстоянии и не зависят от массы тела.

Их проявления впервые описаны в трудах древних ученых Греции, когда они янтарем, потертым о шерсть, притягивали легкие, маленькие частицы отдельных веществ.

Исторический вклад ученых в развитие электродинамики

Опыты с янтарем подробно изучались английским исследователем Уильямом Гильбертом . В последних годах XVI века он сделал отчет о своей работе, а предметы, способные притягивать другие тела на расстоянии, обозначил термином «наэлектризованные».

Французским физиком Шарлем Дюфе было определено существование зарядов с противоположными знаками: одни образовывались при трении стеклянных предметов о шелковую ткань, а другие - смол по шерсти. Он так и назвал их: стеклянные и смоляные. После завершения исследований Бенджамина Франклина было введено понятие отрицательных и положительных зарядов.

Шарль Кулон реализовал возможность измерения силы зарядов конструкцией крутильных весов собственного изобретения.

Роберт Милликен на основе серии проведенных опытов установил дискретный характер электрических зарядов любого вещества, доказав, что они состоят из определенного количества элементарных частиц. (Не путать с другим понятием этого термина - дробности, прерывистости.)

Труды перечисленных ученых послужили фундаментом современных знаний о процессах и явлениях, происходящих в электрических и магнитных полях, создаваемых электрическими зарядами и их движением, изучаемых электродинамикой.

Определение зарядов и принципы их взаимодействия

Электрическим зарядом характеризуют свойства веществ, обеспечивающих им возможность создавать электрические поля и взаимодействовать в электромагнитных процессах. Еще его называют количеством электричества и определяют как физическую скалярную величину. Для обозначения заряда приняты символы «q» или «Q», а при измерениях используют единицу «Кулон», названную в честь французского ученого, разработавшего уникальную методику.

Им был создан прибор, в корпусе которого использовались подвешенные на тонкой нити из кварца шарики. Они ориентировались в пространстве определенным образом, а их положение регистрировалось относительно проградуированной шкалы с равными делениями.

Через специальное отверстие в крышке к этим шарикам подводился другой шар, обладающий дополнительным зарядом. Возникающие силы взаимодействия заставляли отклоняться шарики, поворачивали их коромысло. Величина разницы отсчетов на шкале до ввода заряда и после него позволяла оценивать количество электричества в испытуемых образцах.

Заряд в 1 кулон характеризуется в системе СИ силой тока в 1 ампер, проходящей через поперечное сечение проводника за время, равное 1 секунде.

Все электрические заряды современная электродинамика разделяет на:

    положительные;

    отрицательные.

При взаимодействии их между собой у них возникают силы, направление которых зависит от существующей полярности.



Одинакового типа заряды, положительные либо отрицательные, всегда отталкиваются в противоположные стороны, стремясь, как можно дальше удалиться друг от друга. А у зарядов противоположных знаков действуют силы, стремящиеся сблизить их и соединить в одно целое.

Принцип суперпозиции

Когда в определенном объеме находится несколько зарядов, то для них действует принцип суперпозиции.



Его смысл в том, что каждый заряд определенным образом по рассмотренному выше способу взаимодействует со всеми остальными, притягиваясь к разноименным и отталкиваясь от однотипных. К примеру, на положительный заряд q1 действует сила притяжения F31 к отрицательному заряду q3 и отталкивания F21 - от q2.

Результирующая сила F1, действующая на q1, определяется геометрическим сложением векторов F31 и F21. (F1= F31+ F21).

Таким же методом определяются действующие результирующие силы F2 и F3 на заряды q2 и q3 соответственно.

Посредством принципа суперпозиции сделан вывод о том, что при определенном количестве зарядов в замкнутой системе между всеми ее телами действуют установившиеся электростатические силы, а потенциал в любой определенной точке этого пространства равен сумме потенциалов от всех отдельно приложенных зарядов.

Действие этих законов подтверждают созданные приборы электроскоп и электрометр , имеющие общий принцип работы.



Электроскоп состоит из двух одинаковых лепестков тонкой фольги, подвешенных в изолированном пространстве на токопроводящей нити, присоединенной к металлическому шарику. В обычном состоянии на этот шарик заряды не действуют, поэтому лепестки свободно висят в пространстве внутри колбы прибора.

Как можно передавать заряд между телами

Если к шарику электроскопа поднести заряженное тело, например, палочку, то заряд пройдет через шарик по токопроводящей нити к лепесткам. Они получат одноименный заряд и станут отодвигаться друг от друга на угол, пропорциональный приложенному количеству электричества.

У электрометра такое же принципиальное устройство, но он имеет небольшие отличия: один лепесток закреплен стационарно, а второй отходит от него и снабжен стрелкой, которая позволяет снимать отсчет с проградуированной шкалы.

Для переноса заряда от удаленного стационарно закрепленного и заряженного тела на электрометр можно воспользоваться промежуточными носителями.



Измерения, сделанные электрометром, не обладают высоким классом точности и на их основе сложно анализировать силы, действующие между зарядами. Для их исследования больше приспособлены крутильные весы Кулона. У них использованы шарики с диаметрами, значительно меньшими, чем их удаление друг от друга. Они обладают свойствами точечных зарядов - заряженных тел, размеры которых не влияют на точность прибора.

Измерения, выполненные Кулоном, подтвердили его догадку о том, что точечный заряд передается от заряженного тела к такому же по свойствам и массе, но незаряженному таким образом, чтобы равномерно распределиться между ними, уменьшаясь на источнике в 2 раза. Таким способом удалось уменьшать величину заряда в два, три и иное количество раз.

Силы, существующие между неподвижными электрическими зарядами, называют кулоновским либо статическим взаимодействием. Их изучает электростатика, являющаяся одним из разделов электродинамики.

Виды носителей электрических зарядов

Современная наука считает самой маленькой отрицательно заряженной частицей электрон , а положительной - позитрон . Они имеют одинаковую массу 9,1·10-31 кг. Элементарная частица протон обладает всего одним положительным зарядом и массой 1,7·10-27 кг. В природе количество положительных и отрицательных зарядов уравновешено.

В металлах движение электронов создает , а в полупроводниках носителями его зарядов являются электроны и дырки.

В газах ток образуется передвижением ионов - заряженных неэлементарных частиц (атомов или молекул) с положительными зарядами, называемыми катионами либо отрицательными - анионами.

Ионы образуются из нейтральных частиц.



Положительный заряд создается у частицы, потерявшей электрон под действием мощного электрического разряда, светового или радиоактивного облучения, потока ветра, движения масс воды или ряда других причин.

Отрицательные ионы образуются из нейтральных частиц, дополнительно получивших электрон.

Использование ионизации в медицинских целях и быту

Исследователи давно заметили способность отрицательных ионов воздействовать на организм человека, улучшать потребление кислорода воздуха, быстрее доставлять его к тканям и клеткам, ускорять процесс окисления серотонина. Это все в комплексе значительно повышает иммунитет, улучшает настроение, снимает боли.

Первый ионизатор, используемый для лечения людей, получил название люстры Чижевского , в честь советского ученого, который создал прибор, благотворно влияющий на здоровье человека.

В современных электроприборах для работы в бытовых условиях можно встретить встроенные ионизаторы в пылесосы, увлажнители воздуха, фены, сушилки…

Специальные ионизаторы воздуха очищают его состав, уменьшают количество пыли и вредных примесей.

Ионизаторы воды способны снижать количество химических реагентов в ее составе. Их используют для очистки бассейнов и водоемов, насыщая воду ионами меди или серебра, которые уменьшают рост водорослей, уничтожают вирусы и бактерии.

Реферат по физике

по §1-6

Витенбек Марии

Электрический заряд

Электрический заряд - это связанное с телом свойство, позволяющее ему быть источником электрического поля и участвовать в электромагнитных взаимодействиях. Заряд является количественной характеристикой. Единица измерения заряда в СИ - кулон - электрический заряд, проходящий через поперечное сечение проводника при силе тока 1А за время 1с. Впервые электрический заряд был введён в законе Кулона в 1785 году. Заряд в один кулон очень велик. Если бы два носителя заряда (q1 = q2 = 1Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой 9×10 9 H.

История

Франклин проводит свой знаменитый опыт с летающим змеем, в котором доказывает, что молния - это электричество

Ещё в глубокой древности было известно, что янтарь, потёртый о шерсть, притягивает лёгкие предметы. А уже в конце XVI века английский врач Уильям Гильберт назвал тела, способные после натирания притягивать лёгкие предметы, наэлектризованными.

В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Один образуется при трении стекла о шёлк, а другой - смолы о шерсть. Поэтому Дюфе назвал заряды «стеклянным» и «смоляным». Понятие о положительном и отрицательном заряде ввёл Бенджамин Франклин.

В начале XX века американский физик Роберт Милликен опытным путём показал, что электрический заряд дискретен , то есть заряд любого тела составляет целое кратное от элементарного электрического заряда

Электростатика

Электростатикой называют раздел учения об электричестве, в котором изучаются взаимодействия и свойства систем электрических зарядов, неподвижных относительно выбранной инерциальной системы отсчета.

Величина электрического заряда (иначе, просто электрический заряд) - численная характеристика носителей заряда и заряженных тел, которая может принимать положительные и отрицательные значения. Эта величина определяется таким образом, что силовое взаимодействие, переносимое полем между зарядами, прямо пропорционально величине зарядов, взаимодействующих между собой частиц или тел, а направления сил, действующих на них со стороны электромагнитного поля, зависят от знака зарядов.

Электрический заряд любой системы тел состоит из целого числа элементарных зарядов, равных 1,6×10 −19 Кл (Или, более точно 1,602176487(40)×10 −19) Носителями электрического заряда являются электрически заряженные элементарные частицы. Наименьшей по массе покоя устойчивой частицей, имеющей один отрицательный элементарный электрический заряд, является электрон (его масса покоя равна 9,11×10 −31 кг). Наименьшая по массе покоя устойчивая античастица с положительным элементарным зарядом - позитрон, имеющая такую же массу, как и электрон ] . Также существует устойчивая частица с одним положительным элементарным зарядом - протон (масса покоя равна 1,67×10 −27 кг) и другие, менее распространённые, частицы.

Электрический заряд любой элементарной частицы - величина релятивистски инвариантная. Он не зависит от системы отсчёта, а значит, не зависит от того, движется этот заряд или покоится, он присущ этой частице в течение всего времени ее жизни, поэтому элементарные заряженные частицы зачастую отождествляют с их электрическими зарядами. В целом, в природе отрицательных зарядов столько же, сколько положительных. Электрические заряды атомов и молекул равны нулю, а заряды положительных и отрицательных ионов в каждой ячейке кристаллических решеток твёрдых тел скомпенсированы.

Взаимодействие зарядов

Взаимодействие зарядов: одноименно заряженные тела отталкиваются, разноименно - притягиваются друг к другу

Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, - это электризация тел при соприкосновении . Способность электрических зарядов как к взаимному притяжению, так и к взаимном отталкиванию объясняется предположением о существовании двух различных видов зарядов. Один вид электрического заряда называют положительным, а другой - отрицательным. Разноимённо заряженные тела притягиваются, а одноимённо заряженные - отталкиваются друг от друга.

При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо.

При электризации тела через влияние в нём нарушается равномерное распределение зарядов. Они перераспределяются так, что в одной части тела возникает избыток положительных зарядов, а в другой - отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо.

Закон сохранения электрического заряда

Электрический заряд замкнутой системы сохраняется во времени и квантуется - изменяется порциями, кратными элементарному электрическому заряду, то есть, другими словами, алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.

В рассматриваемой системе могут образовываться новые электрически заряженные частицы, например, электроны - вследствие явления ионизации атомов или молекул, ионы - за счёт явления электролитической диссоциации и др. Однако, если система электрически изолирована, то алгебраическая сумма зарядов всех частиц, в том числе и вновь появившихся в такой системе, всегда равна нулю.

Закон сохранения заряда - один из основополагающих законов физики. Закон сохранения заряда был экспериментально подтверждён в 1843 году великим английским ученым Майклом Фарадеем и считается на настоящее время одним из фундаментальных законов сохранения в физике (подобно законам сохранения импульса и энергии).

Свободные заряды

В зависимости от концентрации свободных зарядов тела делятся на проводники, диэлектрики и полупроводники.

    Проводники - это тела, в которых электрический заряд может перемещаться по всему его объему. Проводники делятся на две группы: 1) проводники первого рода (металлы), в которых перенос зарядов (свободных электронов) не сопровождается химическими превращениями; 2) проводники второго рода (например, расплавленные соли, растворы кислот), в которых перенос зарядов (положительных и отрицательных ионов) ведёт к химическим изменениям.

    Диэлектрики (например стекло, пластмасса) - тела, в которых практически отсутствуют свободные заряды.

    Полупроводники (например, германий, кремний) занимают промежуточное положение между проводниками и диэлектриками.

Измерение

Простейший электроскоп

Для обнаружения и измерения электрических зарядов применяется электроскоп, который состоит из металлического стержня - электрода и подвешенных к нему двух листочков фольги. При прикосновении к электроду заряженным предметом заряды стекают через электрод на листочки фольги, листочки оказываются одноимённо заряженными и поэтому отклоняются друг от друга.

Также может применяться электрометр, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси. При соприкосновении заряженного тела со стрежнем электрометра электрические заряды распределяются по стержню и стрелке, и силы отталкивания, действующие между одноимёнными зарядами на стержне и стрелке, вызывают её поворот

Темы кодификатора ЕГЭ : электризация тел, взаимодействие зарядов, два вида заряда, закон сохранения электрического заряда.

Электромагнитные взаимодействия принадлежат к числу наиболее фундаментальных взаимодействий в природе. Силы упругости и трения, давление газа и многое другое можно свести к электромагнитным силам между частицами вещества. Сами электромагнитные взаимодействия уже не сводятся к другим, более глубоким видам взаимодействий.

Столь же фундаментальным типом взаимодействия является тяготение - гравитационное притяжение любых двух тел. Однако между электромагнитными и гравитационными взаимодействиями имеется несколько важных отличий.

1. Участвовать в электромагнитных взаимодействиях могут не любые, а только заряженные тела (имеющие электрический заряд ).

2. Гравитационное взаимодействие - это всегда притяжение одного тела к другому. Электромагнитные взаимодействия могут быть как притяжением, так и отталкиванием.

3. Электромагнитное взаимодействие гораздо интенсивнее гравитационного. Например, сила электрического отталкивания двух электронов в раз превышает силу их гравитационного притяжения друг к другу.

Каждое заряженное тело обладает некоторой величиной электрического заряда . Электрический заряд - это физическая величина, определяющая силу электромагнитного взаимодействия между объектами природы . Единицей измерения заряда является кулон (Кл).

Два вида заряда

Поскольку гравитационное взаимодействие всегда является притяжением, массы всех тел неотрицательны. Но для зарядов это не так. Два вида электромагнитного взаимодействия - притяжение и отталкивание - удобно описывать, вводя два вида электрических зарядов: положительные и отрицательные .

Заряды разных знаков притягиваются друг к другу, а заряды разных знаков друг от друга отталкиваются. Это проиллюстрировано на рис. 1 ; подвешенным на нитях шарикам сообщены заряды того или иного знака.


Рис. 1. Взаимодействие двух видов зарядов

Повсеместное проявление электромагнитных сил объясняется тем, что в атомах любого вещества присутствуют заряженные частицы: в состав ядра атома входят положительно заряженные протоны, а по орбитам вокруг ядра движутся отрицательно заряженные электроны.

Заряды протона и электрона равны по модулю, а число протонов в ядре равно числу электронов на орбитах, и поэтому оказывается, что атом в целом электрически нейтрален. Вот почему в обычных условиях мы не замечаем электромагнитного воздействия со стороны окружающих тел: суммарный заряд каждого из них равен нулю, а заряженные частицы равномерно распределены по объёму тела. Но при нарушении электронейтральности (например, в результате электризации ) тело немедленно начинает действовать на окружающие заряженные частицы.

Почему существует именно два вида электрических зарядов, а не какое-то другое их число, в данный момент не известно. Мы можем лишь утверждать, что принятие этого факта в качестве первичного даёт адекватное описание электромагнитных взаимодействий.

Заряд протона равен Кл. Заряд электрона противоположен ему по знаку и равен Кл. Величина

называется элементарным зарядом . Это минимальный возможный заряд: свободные частицы с меньшей величиной заряда в экспериментах не обнаружены. Физика не может пока объяснить, почему в природе имеется наименьший заряд и почему его величина именно такова.

Заряд любого тела всегда складывается из целого количества элементарных зарядов:

Если , то тело имеет избыточное количество электронов (по сравнению с количеством протонов). Если же style="vertical-align:-20%;" class="tex" alt=""> , то наоборот, у тела электронов недостаёт: протонов на больше.

Электризация тел

Чтобы макроскопическое тело оказывало электрическое влияние на другие тела, его нужно электризовать. Электризация - это нарушение электрической нейтральности тела или его частей. В результате электризации тело становится способным к электромагнитным взаимодействиям.

Один из способов электризовать тело - сообщить ему электрический заряд, то есть добиться избытка в данном теле зарядов одного знака. Это несложно сделать с помощью трения.

Так, при натирании шёлком стеклянной палочки часть её отрицательных зарядов уходит на шёлк. В результате палочка заряжается положительно, а шёлк - отрицательно. А вот при натирании шерстью эбонитовой палочки часть отрицательных зарядов переходит с шерсти на палочку: палочка заряжается отрицательно, а шерсть - положительно.

Данный способ электризации тел называется электризацией трением . С электризацией трением вы сталкиваетесь всякий раз, когда снимаете свитер через голову;-)

Другой тип электризации называется электростатической индукцией , или электризацией через влияние . В этом случае суммарный заряд тела остаётся равным нулю, но перераспределяется так, что в одних участках тела скапливаются положительные заряды, в других - отрицательные.


Рис. 2. Электростатическая индукция

Давайте посмотрим на рис. 2 . На некотором расстоянии от металлического тела находится положительный заряд . Он притягивает к себе отрицательные заряды металла (свободные электроны), которые скапливаются на ближайших к заряду участках поверхности тела. На дальних участках остаются нескомпенсированные положительные заряды.

Несмотря на то, что суммарный заряд металлического тела остался равным нулю, в теле произошло пространственное разделение зарядов. Если сейчас разделить тело вдоль пунктирной линии, то правая половина окажется заряженной отрицательно, а левая - положительно.

Наблюдать электризацию тела можно с помощью электроскопа. Простой электроскоп показан на рис. 3 (изображение с сайта en.wikipedia.org).

Рис. 3. Электроскоп

Что происходит в данном случае? Положительно заряженная палочка (например, предварительно натёртая) подносится к диску электроскопа и собирает на нём отрицательный заряд. Внизу, на подвижных листочках электроскопа, остаются нескомпенсированные положительные заряды; отталкиваясь друг от друга, листочки расходятся в разные стороны. Если убрать палочку, то заряды вернутся на место и листочки опадут обратно.

Явление электростатической индукции в грандиозных масштабах наблюдается во время грозы. На рис. 4 мы видим идущую над землёй грозовую тучу.


Рис. 4. Электризация земли грозовой тучей

Внутри тучи имеются льдинки разных размеров, которые перемешиваются восходящими потоками воздуха, сталкиваются друг с другом и электризуются. При этом оказывается, что в нижней части тучи скапливается отрицательный заряд, а в верхней - положительный.

Отрицательно заряженная нижняя часть тучи наводит под собой на поверхности земли заряды положительного знака. Возникает гигантский конденсатор с колоссальным напряжением между тучей и землёй. Если этого напряжения будет достаточно для пробоя воздушного промежутка, то произойдёт разряд - хорошо известная вам молния.

Закон сохранения заряда

Вернёмся к примеру электризации трением - натирании палочки тканью. В этом случае палочка и кусок ткани приобретают равные по модулю и противоположные по знаку заряды. Их суммарный заряд как был равен нулю до взаимодействия, так и остаётся равным нулю после взаимодействия.

Мы видим здесь закон сохранения заряда , который гласит: в замкнутой системе тел алгебраическая сумма зарядов остаётся неизменной при любых процессах, происходящих с этими телами :

Замкнутость системы тел означает, что эти тела могут обмениваться зарядами только между собой, но не с какими-либо другими объектами, внешними по отношению к данной системе.

При электризации палочки ничего удивительного в сохранении заряда нет: сколько заряженных частиц ушло с палочки - столько же пришло на кусок ткани (или наоборот). Удивительно то, что в более сложных процессах, сопровождающихся взаимными превращениями элементарных частиц и изменением числа заряженных частиц в системе, суммарный заряд всё равно сохраняется!