Устойчивость ферм, связи между фермами. Виды связей каркасных зданий Для чего нужны вертикальные связи

Связи – это важные элементы стального каркаса, которые необходимы для:

1.обеспечения неизменяемости пространственной системы каркаса и устойчивость его сжатых элементов.

2.восприятия и передачи на фундаменты некоторых нагрузок (ветровых, горизонтальных от кранов).

3.обеспечения совместной работы поперечных рам при местных нагрузках (например, крановых).

4.создания жесткости каркаса, необходимой для обеспечения нормальных условий эксплуатации.

Связи подразделяют на связи между колоннами и связи между фермами (связи шатра).

Система связей между колоннами обеспечивает о время эксплуатации и монтажа геометрическую неизменяемость каркаса и его несущую способность в продольном направлении, а также устойчивость колонн из плоскости поперечных рам.

Для выполнения этих функций необходим хотя бы один вертикальный жесткий диск по длине температурного блока и система продольных элементов, прикрепляющих колонны, не входящие в жесткий диск, к последнему. В жесткие диски включены две колонны, подкрановая балка, горизонтальные распорки и решетка, обеспечивающая при шарнирном соединении всех элементов диска геометрическую неизменяемость. Решетка чаще всего проектируется крестовой, элементы которой работают на растяжение при любом направлении сил, передаваемых на диск, и треугольной, элементы которой работают на растяжение и сжатие. Схема решетки выбирается так, чтобы её элементы было удобно крепить к колоннам (углы между вертикалью и элементов решетки близки к 45°). При больших шагах колонн в нижней части колонны целесообразно устройство диска в виде двухшарнирной решетчатой рамы, а в верхней – использования подстропильной фермы. Распорки и решетка при малых высотах сечения колонн располагаются в одной плоскости, а при больших высотах – в двух плоскостях. На связевые диски передаются крутящие моменты, и поэтому при расположении вертикальных связей в двух плоскостях они соединяются горизонтальными решетчатыми связями.

При размещении жестких дисков вдоль здания нужно учитывать возможность перемещения колонн при температурных деформациях продольных элементов (рис.11.6, а). Если поставить диски по торцам здания (рис 11.6, б), то во всех продольных элементах (подкрановые конструкции, подстропильные фермы, распорки связей) возникают чрезмерные температурные усилия .

Поэтому при небольшой длине здания (температурного блока) ставится вертикальная связь в одной панели (рис 11.7, а). При большой длине здания (или блока) для колонн в торцах возрастают неупругие перемещения за счет податливости креплений продольных элементов к колоннам. Расстояние от торца до диска ограничивается с целью закрепления колонн, расположенных близко к торцу, от потери устойчивости. В этих условиях вертикальные связи ставят в двух панелях (рис 11.7, б), причем расстояние между осями должны быть такими, чтобы усилие не были очень велики.

По торцам здания крайние колонны иногда соединяются между собой гибкими верхними связями (рис 11.7, а). Верхние торцевые связи также делают в виде крестов (рис 11.7, б).

Верхние вертикальные связи следует размещать не только в торцевых панелях здания, но и в панелях, примыкающих к температурным швам, так как это повышает продольную жесткость верхней части каркаса; кроме того, в процессе возведения цеха каждый температурный блок может в течение некоторого времени представлять собой самостоятельный конструктивный комплекс.

Вертикальные связи между колоннами ставят по всем рядам колонн здания; располагать их следует между одними и теми же осями.

Связи, устанавливаемые в пределах высоты ригелей в связевом блоке и торцевых шагах, проектируют в виде самостоятельных ферм, в остальных местах ставят распорки.

Продольные элементы связей в точках крепления к колоннам обеспечивают несмещаемость этих точек из плоскости поперечной рамы (рис 11.8, а). Эти точки в расчетной схеме колонны (рис 11.8, б) могут приняты шарнирными опорами. При большой высоте нижней части колонны бывает целесообразна установка дополнительной распорки (рис 11.8, в, которая закрепляет нижнюю часть колонны посередине ее высоты и сокращает расчетную длину колонны (рис 11.8, г).

При большой длине элементов связи, воспринимающие небольшие усилия, рассчитываются по предельной гибкости.

Связи по покрытию.

Связи между фермами, создавая общую пространственную жесткость каркаса обеспечивают: устойчивость сжатых элементов ригеля из плоскости ферм; перераспределение местных нагрузок, приложенных к одной из рам; удобство монтажа: заданную геометрию каркаса; восприятие и передачу на колонны некоторых нагрузок.

Система связей покрытия состоит из горизонтальных и вертикальных связей. Горизонтальные связи располагаются в плоскостях нижнего, верхнего поясов ферм и верхнего пояса фонаря. Горизонтальные связи состоят из поперечных и продольных (рис.11.10, 11.11)

Элементы верхнего пояса стропильных ферм сжаты, поэтому необходимо обеспечить их устойчивость из плоскости ферм.

Для закрепления плит и прогонов от продольных смещений устраиваются поперечные связи по верхним поясам ферм, которые целесообразно располагать в торцах цеха с тем, чтобы они обеспечивали пространственную жесткость покрытия. При большой длине здания или температурного блока (более 144м) устанавливаются дополнительные поперечные связевые фермы. Это уменьшает поперечные перемещения поясов ферм, возникающие вследствие податливости связей.

Особое внимание обращают на завязку узлов ферм в пределах фонаря, где нет кровельного настила. Здесь для раскрепления узлов верхнего пояса ферм из их плоскости предусматриваются распорки, причем такие распорки в коньковом узле фермы обязательны. Распорки прикрепляются к торцовым связям в плоскости верхних поясов ферм.

В зданиях с мостовыми кранами необходимо обеспечить горизонтальную жесткость каркаса как поперек, так и вдоль здания. При работе мостовых кранов возникают усилия, вызывающие поперечные и продольные деформации каркаса цеха. Поэтому в однопролетных зданиях большой высоты (), в зданиях с мостовыми кранами и весьма тяжелого режима работы при любой грузоподъемности обязательна система связей по нижним поясам ферм.

Для сокращения свободной длины растянутой части нижнего пояса приходится в некоторых случаях предусматривать растяжки, закрепляющие нижний пояс в боковом направлении.. Эти растяжки воспринимают условную поперечную силу Q.

В длинных зданиях, состоящих из нескольких температурных блоков, поперечные связевые фермы по верхним и нижним поясам ставят у каждого температурного шва, имея ввиду что каждый температурный блок представляет собой законченный пространственный каркас. Стропильные фермы обладают незначительной боковой жесткостью, поэтому необходимо устраивать вертикальные связи между фермами, располагающиеся в плоскости вертикальных стоек стропильных ферм(рис 11.10, в).

При опирании опорного нижнего узла стропильных на оголовок колонны сверху вертикальные связи необходимо располагать также по опорным стойкам ферм.

В многопролетных цехах связи по верхним поясам ферм и вертикальные ставятся во всех пролетах, а горизонтальные по нижним поясам – по контуру здания и некоторым средним рядам колонн через 60-90м по ширине здания(рис 11.13). В зданиях имеющих перепады по высоте, продольные связевые фермы ставят и вдоль этих перепадов.

Конструктивная схема связей зависит главным образом от шага стропильных ферм. Для горизонтальных связей пи шаге ферм 6м обычно применяют крестовую решетку, раскосы которой работают только на растяжение(рис 11.14, а), а также могут применяться фермы с треугольной решеткой(рис 11.14, б) – здесь раскосы работаю как на сжатие, так и на растяжение. При шаге 12м диагональные элементы связей, даже работающие только на растяжение, получаются слишком тяжелыми, поэтому систему связей проектируют так, чтобы наиболее длинный элемент был не более 12м, и эти элементы поддерживают диагонали.

Связи между колоннами.

Система связей между колоннами обеспечивает во время эксплуатации и монтажа геометрическую неизменяемость каркаса и его несущую способность в продольном направлении, а также устойчивость колонн из плоскости поперечных рам. Для выполнения этих функций необходимы хотя бы один вертикальный жесткий диск по длине температурного блока и система продольных элементов, прикрепляющих колонны, не входящие в жесткий диск, к последнему. В жесткие диски включены две колонны, подкрановая балка, горизонтальные распорки и решетка, обеспечивающая при шарнирном соединении всех элементов диска геометрическую неизменяемость. Решетка часто проектируется крестовой (элементы ее работают на растяжение при любом направлении сил) и треугольной (элементы работают на растяжение, сжатие). При больших шагах колонн в нижней части колонны целесообразно устройство диска в виде двухшарнирной решетчатой рамы, а в верхней – подстропильной фермы. Распорки и решетки при малых высотах сечения колонн располагаются в одной плоскости, а при больших высотах – в двух плоскостях. На связевые диски передаются крутящие моменты, и поэтому при расположении вертикальных связей в двух плоскостях они соединяются горизонтальными решетчатыми связями. При размещении жестких дисков (связевых блоков) вдоль здания нужно учитывать возможность перемещения колонн при температурных деформациях продольных эл-ов. Если поставить диски по торцам здания, о во всех продольных эл-х (подкрановые констр., подстропильные ферм распорки связей) возникают значительные температурные усилия. Поэтому при небольшой длине здания ставится вертикальная связь в одной панели. При большой длине здания для колонн в торцах возрастают неупругие перемещения за счет податливости креплений продольных эл-ов к колоннам. Расстояние от торца до диска ограничивается с целью закрепления колонн, расположенных близко к торцу, от потери устойчивости. В этих случаях связи ставятся в двух панелях, причем расстояние между их осями должно быть таким, чтобы усилия не были очень велики. Предельные расстояния м/у дисками ставятся от возможных перепадов t и установлены нормами. По торцам здания крайние колонны иногда соединяют м/у собой гибкими верхними связями. Делают их в виде крестов, что целесообразно с точки зрения монтажных условий и однотипности решений. Верхние вертикальные связи следует размещать не только в торцевых панелях здания, но и в панелях, примыкающих к температурным швам, т.к. это повышает продольную жесткость верхней части каркаса. Вертикальные связи устанавливают по всем рядам колонн здания, располагают м/у одними и теми же осями. При проектировании связей по средним рядам колон в подкрановой части следует иметь в виду, что иногда нужно иметь свободное пространство между колонными, тогда конструируют портальные связи. В горячих цехах с неразрезными подкрановыми балками или тяжелыми подкраново-подстропильными фермами целесообразно предусматривать специальные конструктивные мероприятия: уменьшение длины температурных блоков. Связи, кроме условных поперечных сил, воспринимают ветровую нагрузку, направленную на торец здания и от продольных воздействий мостовых кранов. Ветровая нагрузка на торец здания воспринимается стойками торцевого фахверка и частично передается на связи по нижнему поясу ферм. Связи шатра передают эту силу в ряды колонн.

Поперечные элементы - рамы воспринимают нагрузки от стен, покрытий, перекрытий (в многоэтажных зданиях), снега, кранов, ветра, действующего на наружные стены и фонари, а также нагрузки от навесных стен. Продольные элементы каркаса - это подкрановые конструкции, подстропильные фермы, связи между колоннами и фермами, кровельные прогоны (или ребра стальных кровельных панелей).

Основные элементы каркаса - рамы. Они состоят из колонн и несущих конструкций покрытий - балок или ферм, длинномерных настилов и пр. Эти элементы соединяют в узлах шарнирно с помощью металлических закладных деталей, анкерных болтов и сварки. Рамы собирают из типовых элементов заводского изготовления. Другие элементы каркаса - фундаментные, обвязочные и подкрановые балки и подстропильные конструкции. Они обеспечивают устойчивость рам и воспринимают нагрузки от ветра, действующего на стены здания и фонари, а также нагрузки от кранов.

Составные элементы каркаса одноэтажных промышленных зданий

Как пример однопролетное здание, оборудованное мостовым краном (рис.1).

В состав каркаса входят следующие основные элементы:

  1. Колонны, расположенные с шагом Ш вдоль здания; основное назначение колонн поддерживать подкрановые балки и покрытие.
  2. Несущие конструкции покрытия (стропильные* балки или фермы), которые опираются непосредственно на колонны (если их шаг совпадает с шагом колонн) и образуют вместе с ними поперечные рамы каркаса.
  3. Если шаг несущих конструкций покрытия не совпадает с шагом колонн (например, 6 и 12 м), в состав каркаса вводят расположенные в продольных плоскостях подстропильные конструкции (также в виде балок или ферм), поддерживающие промежуточные несущие конструкции покрытия, расположенные между колоннами (рис.1,б).
  4. В некоторых (редких) случаях в состав каркаса вводятся прогоны, опирающиеся на несущие конструкции покрытия и располагаемые на расстояниях 1,5 или 3 м.
  5. Подкрановые балки, опирающиеся на колонны и несущие пути мостовых кранов. В зданиях с подвесными или напольными кранами подкрановые балки не нужны.
  6. Фундаментные балки, опирающиеся на фундаменты колонн и поддерживающие наружные стены здания.
  7. Обвязочные балки, опирающиеся на колонны и поддерживающие отдельные ярусы наружной стены (если она не по всей своей высоте опирается на фундаментные балки).
  8. При расстоянии между основными колоннами каркаса, в плоскостях наружных стен 12 м и более, а также в торцах здания устанавливают вспомогательные колонны (фахверк), облегчающие конструкцию стен.

Рис. 1. Каркас одноэтажного однопролетного здания (схема):

а - при одинаковом шаге колонн и несущих конструкций покрытия; б - при неодинаковом шаге колонн и несущих конструкций покрытия; 1 - колонны; 2 - несущие конструкции покрытия; 3 - подстропильные конструкции; 4 -- прогоны; 5 - подкрановые балки; 6 - фундаментные балки; 7 - обвязочные балки; в - продольные связи колонн; 9 - продольные вертикальные связи покрытия; 10 - поперечные горизонтальные связи покрытия; 11 - продольные горизонтальные связи покрытия.

В стальных каркасах обвязочные балки также относят к фахверку (рис. 2, а). Каркас в целом должен надежно и устойчиво работать под действием крановых, ветровых и других нагрузок.

Рис. 2 Схемы фахверка

а - фахверк продольной стены, б - торцовой фахверк, 1 - основные колонны, 2 - колонны фахверка, 3 - ригель фахверка, 4 - ферма покрытия

Вертикальные нагрузки Р от мостового крана (рис.3), передаваемые через подкрановые балки на колонны с большим эксцентриситетом, вызывают внецентренное сжатие тех колонн, против которых расположен в данный момент мост крана.

Рис. 3. Схема мостового крана

1 - габарит крана, 2 - тележка, 3 - мост крана, 4 - крюк, 5 - колесо крана; 6 - крановый рельс; 7 - подкрановая балка; 8 - колонна

Торможение тележки мостового крана при ее движении вдоль кранового моста (поперек пролета) создает горизонтальные поперечные тормозные силы Т1 действующие на те же колонны.

Торможение мостового крана в целом при его движении вдоль пролета создает продольные тормозные силы Т2, действующие вдоль рядов колонн. При грузоподъемности мостовых кранов, достигающей 650 т и выше, передаваемые ими на каркас нагрузки бывают очень велики. Подвесные краны движутся по путям, подвешенным к несущим конструкциям покрытия, и через них передают свои нагрузки на колонны.

Ветровые нагрузки при различных направлениях ветра могут действовать на каркас как в поперечном, так и в продольном направлениях.

Для обеспечения устойчивости отдельных элементов каркаса в процессе его монтажа и совместной пространственной их работы при воздействии на каркас различных нагрузок в состав каркаса вводят связи.

Основные виды связей каркаса одноэтажных зданий

1. Продольные связи колонн, обеспечивающие их устойчивость и совместную работу в продольном направлении при продольном торможении крана и продольном действии ветра, устанавливаются в конце или посередине длины каркаса.

Устойчивость остальных колонн в продольной плоскости достигается креплением их к связевым колоннам горизонтальными продольными элементами каркаса (подкрановыми балками, обвязочными балками или специальными распорками).

Связи этого вида могут иметь различную схему в зависимости от требований, предъявляемых к проектируемому зданию. Самыми простыми являются крестовые связи (рис. 4, а). В тех случаях, когда они мешают установке оборудования или врезаются в габарит проезда (рис. 4, б), их заменяют портальными связями.

В бескрановых зданиях небольшой высоты такие связи не нужны. Работа колонн в поперечном направлении во всех случаях обеспечивается большими в этом направлении размерами их поперечного сечения и жестким креплением их к фундаментам.

Рис.4. Схема вертикальных связей по колоннам. 1 - колонны, 2 - покрытие, 3 - связи, 4 - проезд

2. Продольные вертикальные связи покрытия , обеспечивающие устойчивость вертикального положения несущих конструкций (ферм) покрытия на колоннах, поскольку крепление их к колоннам считается шарнирным, располагаются по концам каркаса. Устойчивость остальных ферм достигается креплением их к связевым фермам горизонтальными распорками.

3. Поперечные горизонтальные связи , обеспечивающие устойчивость верхнего сжатого пояса ферм против продольного изгиба, располагаются по концам каркаса и образуются путем объединения верхних поясов двух соседних ферм в единую конструкцию, жесткую в горизонтальной плоскости. Устойчивость верхних поясов остальных ферм достигается креплением их к связевым фермам в плоскости верхнего пояса при помощи распорок (или ограждающих элементов покрытия) .

4. Продольные горизонтальные связи покрытия , располагаемые вдоль наружных стен в уровне нижнего пояса ферм.

Все три вида связей покрытия имеют целью объединить отдельные плоские несущие элементы покрытия, жесткие только в вертикальной плоскости, в единую неизменяемую пространственную конструкцию, воспринимающую местные горизонтальные нагрузки от кранов, нагрузки от ветра и распределяющую их между колоннами каркаса.

Каркасы одноэтажных промышленных зданий возводят чаще всего из сборного железобетона, стальные конструкции допускаются лишь при наличии особенно больших нагрузок, пролетов или других условий, делающих нецелесообразным применение железобетона. Расход стали в железобетонных конструкциях меньше, чем в стальных: в колоннах - в 2,5-3 раза; в фермах покрытия- в 2-2,5 раза. Виды промзданий в один этаж .

Однако стоимость стальных и железобетонных конструкций одинакового назначения отличается незначительно и в настоящее время каркасы делают в основном стальные.

Описанный выше комплекс связей в наиболее полной и четкой форме встречается в стальных каркасах, отдельные элементы которых имеют особенно малую жесткость. Более массивные элементы железобетонных каркасов имеют и большую жесткость. Поэтому в железобетонных каркасах отдельные виды связей могут отсутствовать. Например, в здании без фонарей, с несущими конструкциями покрытия в виде балок и настилом из крупнопанельных плит связи в покрытии не делают.

В монолитных железобетонных каркасах (которые в отечественной практике встречаются очень редко) жесткое соединение элементов каркаса в узлах и большая массивность элементов делают все виды связей ненужными.

Связи чаще всего делают металлические - из прокатных профилей. В железобетонных каркасах встречаются и железобетонные связи, в основном в виде распорок.

Каркас многопролетного здания отличается от каркаса однопролетного здания в первую очередь наличием внутренних средних колонн, поддерживающих покрытие и подкрановые балки. Фундаментные балки по внутренним рядам колонн устанавливают только для опирания внутренних стен, а обвязочные - при большой их высоте. Связи проектируются по тем же принципам, что и в однопролетных зданиях.

При сезонных колебаниях температуры конструкции каркаса испытывают температурные деформации, которые при большой длине каркаса и значительном температурном перепаде могут быть весьма существенными. Например, при длине каркаса 100 м, коэффициенте линейного расширения α = 0,00001 и температурном перепаде 50° (от +20° летом до -30° зимой), т. е. для конструкций, находящихся на открытом воздухе, деформация равна 100 0,00001 50 = 0,05 м - 5 см.

Свободным деформациям горизонтальных элементов каркаса препятствуют колонны, жестко закрепленные к фундаментам.

Во избежание появления в конструкциях значительных напряжений от этой причины, каркас делят в надземной части температурными швами на отдельные самостоятельные блоки.

Расстояния между температурными швами каркаса по длине и ширине здания выбирают так, чтобы можно было не считаться с усилиями, возникающими в элементах каркаса от климатических колебаний температуры.
Предельные расстояния между температурными швами для каркасов из различных материалов установлены СНиПом в пределах от 30 м (открытые монолитные железобетонные конструкции) до 150 м (стальной каркас отапливаемых зданий).

Температурный шов, плоскость которого расположена перпендикулярно к пролетам здания, называется поперечным, шов, разделяющий два смежных пролета - продольным.

Конструктивное выполнение температурных швов бывает различное. Поперечные швы всегда осуществляются путем установки парных колонн, продольные швы выполняются как путем установки парных колонн (рис. 5, а), так и путем устройства подвижных опор (рис. 5, б), обеспечивающих независимую деформацию, конструкций покрытия соседних, температурных блоков. В каркасах, разделенных температурными швами на отдельные блоки, связи устанавливают в каждом блоке, как в самостоятельном каркасе.

Рис.5. Варианты продольного температурного шва

а - с двумя колоннами, б - с подвижной опорой, 1 - балки, 2 - столик, 3 - колонна, 4 - каток

К каркасу относят также несущие конструкции рабочих площадок, которые бывают необходимы внутри основного объема здания (если они связаны с основными конструкциями здания).

Конструкции рабочих площадок состоят из колонн и опирающихся на них перекрытий. В зависимости от технологических требований рабочие площадки могут располагаться на одном или нескольких уровнях (рис. 6).

Рис. 6. Многоярусная рабочая площадка.

Таким образом, при строительстве одноэтажных и многоэтажных промышленных зданий в качестве несущей принимается, как правило, каркасная система. Каркас позволяет наилучшим образом организовать рациональную планировку производственного здания (получить большепролетные пространства, свободные от опор) и наиболее приемлем для восприятия значительных динамических и статических нагрузок, которым подвержено промышленное здание в процессе эксплуатации.

Видео - поэтапная сборка металоконструкций

Для обеспечения пространственной жесткости и геометрической неизменяемости всего здания в целом, а также для обеспечения устойчивости колонн из плоскости поперечных рам, устанавливают вертикальные связи между колоннами.

Вертикальные связи между колоннами имеют наиболее существенное значение для создания пространственной жесткости каркаса машзала. Они предназначены для:

– создания продольной жесткости каркаса, необходимой для его нормальной эксплуатации и монтажа;

– обеспечения устойчивости колонн из плоскости поперечных рам;

– восприятия ветровой нагрузки, действующей на торец здания, и сил продольного торможения мостовых кранов и передачи их на фундаменты.

Связи по колоннам размещают в подкрановой части колонн (связи по нижним частям колонн) и в надкрановой части колонн (связи по верхним частям колонн) (рис. 2.4,а).

в
б
б
а
в

Рис. 2.5. Размещение вертикальных связей по колоннам:

а) связей нет; б) правильное расположение связей;

в); г) неправильное размещение связей



Для обеспечения свободы развития температурных деформаций продольных элементов каркаса (подкрановых балок, прогонов, распорок) жесткий пространственный брус ставят в середине здания или температурного блока (рис. 2.5,б). Если жесткие связевые брусья будут поставлены по краям блока (рис. 2.5,в), то при перепаде температур (лето-зима) будет происходить стесненное развитие температурных деформаций продольных элементов каркаса. Стеснённые температурные деформации вызовут дополнительные напряжения в продольных элементах каркаса, которые должны быть учтены в расчетах.

Если пространственный брус установить только с одного края здания или температурного блока (рис. 2.5,г), то горизонтальное перемещение торцевой колонны на противоположном конце здания будет очень велико и может привести к повреждениям узлов сопряжения элементов. Расстояние от торца здания до оси ближайшей вертикальной связи (жесткого диска), а также между осями вертикальных связей в одном температурном отсеке, не должно превышать величин, указанных в табл. 42 СНиП.

Машинные залы электростанций обычно имеют значительную длину. В этом случае жесткий пространственный брус ставят по длине машзала в двух панелях. При принятых в курсовом проекте длинах машзалов жесткий пространственный брус можно расположить в одной панели в середине здания. Расстояние от него до торца здания не должно превышать 60 м.

Вертикальные связи в верхних частях колонн обладают небольшой жесткостью и незначительно препятствуют температурным деформациям каркаса. Поэтому вертикальные связи в верхних частях колонн размещают у торцов здания, у температурных швов и в средней части здания или температурного отсека, там, где располагают связи по нижним частям колонн (рис. 2.4).

Вертикальные связи в верхних частях колонн предназначены:

– для обеспечения удобства монтажа сооружения, который обычно начинается с краёв. Первая и вторая рамы и связи между ними образуют устойчивый элемент, к которому как бы прикрепляют остальные рамы;

– для восприятия ветровой нагрузки, действующей на торец здания. Благодаря этим связям нагрузка передается на подкрановые балки, затем на нижние связи между колоннами и далее на фундамент;

– для создания вместе со связями по нижним частям колонн жесткого пространственного бруса.

Связи по фермам

Связи по фермам предназначены для:

– создания (совестно со связями по колоннам) общей пространственной жесткости и геометрической неизменяемости каркаса;

– обеспечения устойчивости сжатых элементов ферм из плоскости ригеля путём сокращения их расчетной длины;

– восприятия горизонтальных нагрузок на отдельные рамы (поперечного торможения крановых тележек) и перераспределения их на всю систему плоских рам каркаса;

– восприятия и (совестно со связями по колоннам) передачи на фундаменты некоторых горизонтальных нагрузок на конструкции машзала (ветровых, действующих на торец здания);

– обеспечения удобства монтажа ферм.

Связи по фермам подразделяют на горизонтальные и вертикальные. Горизонтальные связи располагают в плоскости верхних и нижних поясов ферм (рис. 2.4,б,в). Горизонтальные связи, расположенные поперёк здания называют поперечными, а вдоль – продольными.

Вертикальные связи располагают между фермами (рис. 2.4,а). Их выполняют в виде самостоятельных монтажных элементов (ферм) и устанавливают совместно с поперечными связями по верхним и нижним поясам ферм. По ширине пролета ставят 3 и более вертикальные связевые фермы. Две, из которых располагают по опорным узлам ферм, а остальные в плоскости вертикальных стоек ферм. Расстояние между вертикальными связями по фермам от 6 до 15 м. Вертикальные связи между фермами служат для устранения деформаций сдвига элементов покрытия в продольном направлении. Поперечные горизонтальные связи в плоскости верхних и нижних поясов ферм (рис. 2.4,б, в) совместно с вертикальными связями между фермами устанавливают по торцам здания и в средней его части, там, где размещены вертикальные связи по колоннам. Они создают жесткие пространственные брусья у торцов здания и в средней его части. Пространственные брусья у торцов здания служат для восприятия ветровой нагрузки, действующей на торцевой фахверк и передачи ее на связи по колоннам, подкрановые балки и далее на фундамент.

Элементы верхнего пояса стропильных ферм сжаты и могут потерять устойчивость из плоскости ферм. Поперечные связи по верхним поясам ферм вместе с распорками закрепляют узлы ферм от перемещения в направлении продольной оси здания и обеспечивают устойчивость верхнего пояса из плоскости ферм. Продольные связевые элементы (распорки) снижают расчетную длину верхнего пояса ферм, если они сами закреплены от смещения жестким пространственным связевым брусом. В беспрогонных покрытиях ребра панелей закрепляют узлы ферм от смещения. В покрытиях по прогонам узлы ферм от смещения закрепляют сами прогоны, если они закреплены в горизонтальной связевой ферме.

Во время монтажа верхние пояса ферм закрепляют распорками в трёх или более точках. Это зависит от гибкости фермы в процессе монтажа. Если гибкость элементов верхнего пояса фермы не превышает 220 , распорки ставят по краям и в середине пролёта (рис. 2.4,б). Если 220 , то распорки ставят чаще. В беспрогонном покрытии это закрепление производят с помощью дополнительных распорок, а в покрытиях с прогонами распорками являются сами прогоны.

б
а

Рис. 2.6. Поперечное смещение рамы от действия

крановой нагрузки:

а) при отсутствии продольных связей по нижним поясам ферм;

б) при наличии продольных связей по нижним поясам ферм

Продольные горизонтальные связи по нижним поясам ферм (рис. 2.4,в и рис.2.6.) предназначены для перераспределения горизонтальной поперечной крановой нагрузки от торможения тележки крана. Эта нагрузка действует на отдельную раму и при отсутствии связей вызывает её значительные перемещения (рис. 2.6,а).

Продольные горизонтальные связи вовлекают в пространственную работу соседние рамы, вследствие чего поперечное смещение каркаса значительно уменьшается (рис. 2.6,6).

Продольные связи по нижним поясам ферм размещают в крайних панелях ферм вдоль всего здания. В машинных залах электростанций продольные связи размещают только в первых панелях нижних поясов ферм, прилегающих к колоннам крайнего ряда. С противоположной стороны фермы продольные связи не ставят, т.к. силу поперечного торможения крана воспринимает жесткая деаэраторная этажерка.

В зданиях пролётом 30 м для закрепления нижнего пояса от продольных перемещений устанавливают распорки в средней части пролета. Эти распорки уменьшают расчетную длину, а, следовательно, и гибкость нижнего пояса ферм.

Конструкция связей, устанавливаемых в покрытии, зависит от схемы и материала каркаса, типа покрытия, высоты здания, вида крана, его грузоподъемности и режима работы.
Вертикальные связи между опорами железобетонных ферм или балок покрытия ставят только в зданиях с плоской кровлей, причем в зданиях без подстропильных конструкций связи располагают в каждом ряду колонн, а с такими конструкциями — только в крайних рядах колонн при шаге 6 м.

Вертикальные связи между опорами ферм или балок ставят не чаще, чем через один шаг. Их количество при длине температурного блока 60—72 At на каждый ряд колонн может быть не более 5 при шаге 6 м и не более 3 при шаге 12 м. На рис. 69, а показаны четыре такие связи.

При наличии вертикальных связей между опорами ферм или балок покрытия или связей между колоннами (в зданиях без кранов) по верху колонн ст."шяг распорки (рис. 69, а, в).

В зданиях с шагом колонн в средних и крайних рядах 12 м предусматривают горизонатальные фермы в торцах - по две в каждом пролёте на температурный блок. Эти фермы ставят на уровне нижнего пояса стропильных ферм (рис. 69, в). В зданиях с подстропильными конструкциями в средних рядах колонн устраивают горизонтальные распорки в количестве 2—4 на один ряд колонн температурного блока (рис. 69, б).

Рис. 69. Связи в покрытиях при железобетонных фермах

В зданиях с мостовыми кранами тяжелого режима работы или при наличии оборудования, вызывающего колебания конструкций, по нижнему поясу стропильных ферм или балок в середине каждого пролета устанавливают распорки (тяжи) и вертикальные связи в двух крайних шагах температурного блока. Роль горизонтальных связей по верхнему поясу ферм или балок выполняют крупнопанельные плиты покрытия.

В пролетах с фонарями для обеспечения устойчивости верхнего пояса стропильных ферм устанавливают распорки (тяжи) по коньку ферм и горизонтальные связи по их верхнему поясу в пределах ширины фонаря в крайних (или вторых) шагах температурного блока.

В покрытиях с прогонами в крайних шагах температурных блоков по всей их ширине под прогонами устраивают горизонтальные связи крестовой схемы.
Вертикальные и горизонтальные связи делают в большинстве случаев из уголков и крепят к железобетонным конструкциям с помощью косынок (рис. 69, г, д). Тяжи изготовляют из круглой стали, а распорки, работающие на сжатие,— из железобетона.

Система связей покрытия в зданиях со стальным каркасом состоит из горизонтальных связей в плоскости нижних и верхних поясов стропильных ферм и вертикальных связей между фермами.

Горизонтальные связи по нижним поясам стропильных ферм располагают как поперек здания (поперечные горизонтальные), так и вдоль его (продольные горизонтальные). Поперечные горизонтальные связи по нижним поясам устанавливают у торцов и у температурных швов здания. При температурных блоках длиной 120—150 м и при кранах большой грузоподъемности предусматривают также промежуточные связе-вые фермы через каждые 60 м.
Продольные горизонтальные связи располагают по крайним панелям нижних поясов стропильных ферм и устраивают в зданиях с кранами Q>10T и в зданиях с подстропильными фермами.

В однопролетных зданиях такие связи располагают вдоль обоих рядов колонн, а в многопролетных — вдоль крайних рядов колонн и через ряд вдоль средних рядов (при кранах грузоподъемностью до 50 7) или более часто (при грузоподъемности кранов более 50 Т).
Вдоль средних рядов колонн при одинаковой высоте смежных пролетов продольные связи рекомендуется располагать с одной стороны колонн, а в мечтах ш"ропала высот — с обеих сторон ряда колонн.

Боковую жёсткость нижних поясов ферм, расположенных в промежутке между двумя поперечными связевыми фермами почивают специальными растяжками из уголков, закрепленными за узлы связевых ферм. Схема разбивки поперечных и продольных связей по нижним поясам ферм показана на рис. 70, а.

Горизонтальные поперечные связи по верхним поясам ферм обеспечивают устойчивость верхних поясов ферм из их плоскости, и ставят их в покрытиях с прогонами. В панельных покрытиях указанные связи предусматривают только в торцах здания и у температурных швов. В промежутках между поперечными связевыми фермами боковая устойчивость верхних поясов ферм обеспечивается прогонами, а на участках под фонарями — растяжками из уголков. Поперечные связи по верхним и нижним поясам ферм рекомендуется совмещать в плане.

Рис. 70. Связи в покрытиях при стальных фермах

При наличии подстропильных ферм в однопролетных покрытиях без прогонов и в многопролетных покрытиях, расположенных в одном уровне, предусматривают продольные горизонтальные связи в плоскости верхних поясов в одной из крайних панелей ферм. В случае перепада высот смежных пролетов предусматривают по одной продольной системе в каждом уровне.

Вертикальные связи покрытия располагают в плоскостях опорных стоек стропильных ферм, в плоскости коньковых стоек, для ферм пролетом до 30 м, а также в плоскости стоек, находящихся под узлом крепления наружных ног фонаря для ферм пролетом более 30 м. Вертикальные связи делают в виде ферм с параллельными поясами, имеющими высоту, равную высоте стоек, к которым связи крепят.

Связи по прогонам в виде ферм жесткости, распорок и тяжей обеспечивают проектное положение прогонов, повышают устойчивость и облегчают работу прогонов на скатную составляющую вертикальных нагрузок и воспринимают ветровые усилия.

Все типы связевых ферм выполняют из уголков с перекрестной решеткой, распорки также из уголков, а тяжи — из круглой стали. Крепят связи на черных болтах, в зданиях же с кранами большой грузоподъемности и тяжелого режима работы, а также в случае значительных усилий в элементах связей — на монтажной сварке и реже — на заклепках или чистых болтах. Некоторые детали крепления связей приведены на рис. 70, б — г.

1. горизонтальные поперечные связи по нижним поясам ферм размещаются в торцах температурного блока при шаге колонн крайнего и среднего ряда 12 м. При длине блока более 144 м. дополнительно устраивают в середине блока. Образуются путем объединения нижних поясов 2-х соседних стропильных ферм с помощью решетки. В результате они выполняют совместно функции: воспринимают от стоек торцового фахверка ветровую нагрузку и передают ее на связи между колоннами и далее на фундамент, а также предотвращают перемещения вертикальных связей и растяжки между нижними поясами ферм. Распорки между нижними поясами ферм- закрепляют эти пояса от смещения, тем самым сокращая расчетную длину из плоскости фермы, уменьшает вибрации нижних поясов ферм.

2. горизонтальные продольные связи по нижним поясам ферм служат опорами для верхних концов стоек продольного фахверка; при действии крановых нагрузок вовлекают в работу соседние рамы, уменьшая поперечные деформации и избегая заклинивания мостовых кранов. Эти связи обязательны в однопролетных зданиях большой высоты, с тяжелыми мостовыми кранами, при наличии продольного фахверка. Распорки обеспечивают проектное положение ферм в процессе монтажа, ограничивают гибкость ферм из их плоскости. Роль распорок выполняют прогоны, которые закреплены от смещения.

3. горизонтальные поперечные связи по верхним поясам ферм по конструкциям и схемам размещения аналогичны связям по нижним поясам. Служат от смещения распорок по верхним поясам ферм. От них можно отказаться, если между соседними стропильными фермами блока установить вертикальные связи и через них обеспечит крепление распорок к поперечным связям по нижним поясам ферм.

4. 4. вертикальные связи между опорами ферм или балок ставят только в зданиях с плоской кровлей, причем в зданиях без подстропильных конструкций размещаются в каждом ряду колонн, а с подстропильными конструкциями – только в крайних рядах колонн при шаге 6 м. Ставят не чаще, чем через один шаг. При длине температурного блока 60-72 м на каждый ряд колонн их должно быть не более 5 при шаге 6 м и не более 3 при шаге 12 м. при наличии этих связей по верху колонн ставят распорки.

Единая модульная система в строительстве

Типизация в строительстве осуществляется на основе Единой Модульной Системы. Это правила по которым назначаются и согласуются между собой размеры зданий и конструкций.

Размеры по правилам ЕМС назначают по базе модуля. Основной модуль (М) равен 100 мм. При выборе размеров для зданий, конструкций пользуются укрупненным модулем: 6000 мм = 60М; 7200 мм = 72М. Дробный модуль применяют для назначения сечений конструкций: 50 мм = ½М.

ЕМС - единая модульная система, представляющая собой свод правил, которые координируют размеры объемно-планировочных и конструктивных частей строительных объектов и размеры сборных модулей и оборудования.

МКРС - модульная координация размеров в строительстве. Стандарт, применение которого при проектировании зданий позволяет унифицировать размеров строительных конструкций и объемно-планировочные размеры зданий. Данный стандарт предполагает унификацию следующих параметров: высоты этажей (Н0), шагов (В0) и пролетов (L0).

ЕМС основана на принципе кратности размеров. Размер любого из элементов здания должен быть кратен величине, называемой модулем. В системе ЕМС принят модуль в 100 миллиметров, который в технической документации обозначается буквой М. Соответственно, размеры крупных элементов конструкций будут обозначаться как производные от модуля. Например, 6000 мм - 60 М, 3000 мм - 30 М и так далее. Мелкие элемент обозначаются как дробные о т модуля: 50 мм - ½ М, 20 мм - 1/5 М.

15 основа планировки промзданий

Промышленные здания подразделяются по двум видам планировки:

раздельные (отдельно стоящие) здания , планировка которых хотя и дает конструктивную простоту и высокий уровень индустриальности в производстве зданий, однако отличается такими недостатками, как большая площадь застройки, большая протяженность инженерных и транспортных сетей, невозможность организации поточного производства, значительные энергозатраты на отопление помещений;

сплошные (сблокированные) здания , которые представляют собой

многопролетные корпуса большой площади (до 30...35 тыс. кв.м).Сплошная планировка обеспечивает многовариантную расстановку технологического оборудования, уменьшение площади завода на 30…40 %, снижение стоимости строительства на 10…15 %, сокращение длины инженерных и транспортных коммуникаций, сокращение периметра наружных стен на 50 % со снижением расходов на эксплуатацию. Однако недостатками сплошных зданий являются удорожание естественного освещения, затрудненный водоотвод с покрытий, усложнение путей передвижения транспорта и персонала. Блокировать цеха целесообразно в тех случаях, когда смежные производства не требуется разделять капитальными стенами и при этом не ухудшаются условия технологии производства и труда рабочих.

Планировка промышленных зданий сопровождается зонированием в пределах объема производственных зданий, помещений, участков и зон, выделяемых по признакам однотипности технологии, уровню производственной вредности, уровню пожаро- и взрывоопасности, направленности транспортных и людских потоков, по перспективам расширения и переоснащения.

На выбор этажности промышленного здания влияют:

технология производства;

климатические условия района;

требования к застройке (городская, периферийная);

характер отведенного участка (свободный, стесненный рельеф);

достоинства и недостатки.

Одноэтажные здания имеют следующие достоинства :

простое объемно-планировочное решение;

склонность к унификации и блокированию;

снижение стоимости 1 кв. м на 10 % по сравнению со стоимостью многоэтажных зданий;

облегчение установки технологического оборудования;

упрощение путей грузовых потоков и использование горизонтального транспорта;

равномерное освещение рабочих мест естественным светом через фонари;

обеспечение естественного воздухообмена.

Недостатками одноэтажных зданий являются:

большая площадь застройки;

большая протяженность инженерных и транспортных сетей;

повышенные расходы на благоустройство территории;

большая площадь наружных ограждающих конструкций и в результате значительные расходы на отопление.

Многоэтажные здания лишеныбольшинства недостатков одноэтажных зданий и рациональны по применению, особенно при нагрузках до 10 кН/кв. м.

К основным недостаткам многоэтажных зданий относятся:

потребность в вертикальном транспорте;

повышенная стоимость;

ограничение по ширине при необходимости естественного освещения (ширина не более 24 м);

высокий удельный вес подсобных помещений.

Температурный блок.

Для ограничения усилий, возникающих в конструкциях от перепада температур, здание разрезается температурно-деформационными швами на отсеки (температурные блоки), размеры которых зависят от материала каркаса, теплового режима здания и климатических условий района строительства. Эти размеры определяются расчетом.

Продольные и поперечные температурно-деформационные швы указаны синим и красным цветами соответственно.

Для железобетонного и смешанного каркаса длина температурного блока А ≤ 72 м – если в здании по длине присутствуют неразрезные элементы (например, подкрановые балки). Для бескрановых зданий нормами разрешено увеличивать А до 144 м. Однако, если в здании есть подвесное оборудование (монорельс и т.п.) длина температурного блока не должна превышать 72 м. Допускается А увеличивать до 280 м, но при этом высота строения не должна превышать 8,4 м.

Ширина температурного блока Б не должна быть больше 90-96 м.

В особых климатических районах и для неотапливаемых помещениях длину температурного блока А назначают по инструкциям, привязанным к местным климатическим условиям.

В стальных каркасах зданий с мостовыми кранами А ≤ 120 м, в бескрановых зданиях А ≤ 240 м, а Б ≤ 210 м. В зданиях с кранами большой грузоподъемности (Q до 4500 кН) или при тяжелом или особо тяжелом режиме их работы А не должна превышать 96 м.

Температурный шов

Прежде всего, необходимо разобраться с понятием температурного шва и выполняемой им функции. Тактемпературный шов представляет собой сквозную прорезь в стене здания или его кровельной плите. Для каждого здания выполняется несколько таких прорезей, в результате чего оно разделяется на несколько независимых блоков. В результате каждый из этих блоков может свободно деформироваться, что не приводит к образованию трещин в плитах. Дело в том, что деформационные швы и представляют собой своего рода искусственные трещины, которые оформлены таким образом, чтобы не создавать каких-либо проблем при эксплуатации здания. Ширина деформационного шва определяет величину, в пределах которой возможно изменение линейных размеров каждого из блоков. Точнее будет сказать наоборот, ширина температурного шва должна выбираться, исходя из возможной величины деформаций.

Проектирование температурных швов является одной из важнейших стадий строительства здания. При этом необходимо, в первую очередь, определить длину каждого из блоков, на которые стены разбиваются деформационными швами, а также ширину швов. Любые деформационные швы, в том числе и температурные, устраиваются в тех зонах, где концентрируются напряжения, вызываемые соответствующими деформациями. При этом длина блоков должна быть такой, чтобы каждый из них мог подвергаться температурным деформациям без потери конструктивной жесткости и без разрушения. Поэтому для определения данного параметра учитывается целый ряд факторов, к числу которых относятся тип стенового материала, конструктивные особенности, средние температуры в летний и зимний период, характерные для региона строительства.

Важной особенностью температурных швов является то, что они устраиваются только на высоту надземной части строения, в то время как некоторые другие деформационные швы, например осадочные, устраиваются на всю высоту здания до подошвы фундамента. Это связано с тем, что фундамент здания в значительно меньшей степени подвержен перепадам температуры и не нуждается в специальной защите