Законы кирхгофа примеры. Первый закон кирхгофа

Большое количество электрических цепей на практике являются сложными. Однако в цепь любого уровня сложности имеет элементы двух простейших видов. Это узлы и замкнутые контуры. Узел - это любая точка разветвления цепи, в которой сошлось три или более проводников, по которым текут токи.

Второе правило (закон) Кирхгофа является следствием обобщенного закона Ома. Так, если в изолированной замкнутой цепи есть один источник ЭДС, то сила тока в цепи будет такой, что сумма падения напряжения на внешнем сопротивлении и внутреннем сопротивлении источника будет равна сторонней ЭДС источника. Если источников ЭДС несколько, то берут их алгебраическую сумму. Знак ЭДС выбирается положительным, если при движении по контуру в положительном направлении первым встречается отрицательный полюс источника. (За положительное направление обхода контура принимают направление обхода цепи либо по часовой стрелке, либо против нее).

Формулировка второго закона Кирхгофа

Произведение алгебраической величины силы тока (I) на сумму вешних и внутренних сопротивлений всех участков замкнутого контура равно сумме алгебраических значений сторонних ЭДС () рассматриваемого контура:

Каждое произведение определяет разность потенциалов, которая существовала бы между концами соответствующего участка, если бы ЭДС в нем была равно нулю. Величину называют падением напряжения, которое вызывается током.

Второй закон Кирхгофа иногда формулируют следующим образом:

Для замкнутого контура сумма падений напряжения есть сума ЭДС в рассматриваемом контуре.

Правила Кирхгофа служат для того, чтобы составить систему уравнений, позволяющих найти силу тока для сложной цепи. Направление положительного обхода выбирают для всех контуров одинаковым. При составлении уравнений, используя правила Кирхгофа необходимо внимательно следить за расстановкой знаков токов и ЭДС.

Система уравнений, которая получается при использовании первого и второго закона Кирхгофа является полной и дает возможность отыскать все токи. При составлении уравнений, используя правила Кирхгофа, надо следить за тем, чтобы новое уравнение имело хотя бы одну величину, которая еще не вошла в предыдущие уравнения. Кроме того, необходимо, чтобы система уравнений имела число уравнений равное количеству неизвестных.

Второй закон Кирхгофа следует из того, что электрическое напряжение по замкнутому контуру равно нулю, то есть это правило является следствием основного свойства электростатического поля, которое заключается в том, что работа поля при движении заряда по замкнутой траектории равна нулю.

Примеры решения задач

ПРИМЕР 1

Задание Примените второе правило Кирхгофа для рис.1 и запишите уравнения рассмотрев контуры: ABDCA; ABFEA

Решение Направление обхода контура зададим при помощи последовательности букв в его обозначении. Так для контура имеем направление обхода по часовой стрелке. Рассматривая эту цепь в дальнейшем направления обхода контуров изменять нельзя. Положительными будем считать токи, которые совпадают с направлением обхода контура. Для контура со знаком плюс будут во второе правило Кирхгофа входить ток: , со знаком минус ток . В соответствии с правилом выбора знака ЭДС, сформулированном в теоретической части, в рассматриваемый контур и будут положительными. Уравнение, соответствующее второму правилу Кирхгофа для контура запишем как:

где и - внутренние сопротивления источников ЭДС; и - внешние сопротивления.

Рассмотрим контур . Ток согласно избранным нами направлениям будет положительным во втором законе Кирхгофа, то - отрицательным. ЭДС войдет в уравнение со знаком минус. Получим:

Ответ Для контура . Для контура получили:

ПРИМЕР 2

Задание Пусть n одинаковых источников ЭДС соединены последовательно и замкнуты на внешнюю цепь (рис.2). Чему равна ЭДС данной цепи, если ЭДС каждого источника равна , внутренне сопротивление каждого источника ? Сопротивление внешней цепи R.

Два приема, которые применяют для упрощения процесса составления уравнений, необходимых при расчетах сложных разветвленных цепей постоянного тока называют законами (вернее было бы сказать правилами) Кирхгофа. Прежде чем перейти к самим правила Кирхгофа введем два необходимых определения.

Разветвлёнными цепями названы цепи, которые имеют несколько замкнутых контуров, несколько источников электродвижущей силы (ЭДС).

Узлом разветвлённой цепи называют точку, в которой сходятся три или более проводников с токами.

Первый закон (правило) Кирхгофа, простыми словами

Первое правило Кирхгофа называют правилом узлов, так как оно касается сил токов в узах цепи. Словесно первый закон Кирхгофа формулируют следующим образом: Алгебраическая сумма сил токов в узле равна нулю. В виде формулы это правило запишем как:

С каким знаком сила тока будет входить в сумму (1), зависит от произвольного выбора. Но при этом следует считать, что все входящие в узел токи имеют одинаковые знаки, а все исходящие из узла токи имеют противоположные входящим, знаки. Пусть все входящие токи мы примем за положительные, тогда все исходящие их этого узла токи будут отрицательными. Если направления токов изначально не заданы, то их задают произвольно. Если при расчетах получено, что сила тока отрицательна, значит, что верное направление тока является противоположным тому, которое предполагали.

Первый закон Кирхгофа является следствием закона сохранения заряда. Если в цепи текут только постоянные токи, то нет в этой цепи точек, которые накапливали бы заряд. Иначе токи не были бы постоянными.

Первый закон Кирхгофа дает возможность составить независимое уравнение, при наличии в цепи k узлов.

Второй закон (правило) Кирхгофа, простыми словами

Второй закон Кирхгофа относят к замкнутым контурам, поэтому его называют правилом контуров. Согласно этому правилу суммы произведений алгебраических величин сил тока на внешние и внутренние сопротивления всех участков замкнутого контура равны алгебраической сумме величин сторонних ЭДС (), входящих в рассматриваемый контур. В виде формулы второй закон Кирхгофа запишем как:

где величину часто называют падением напряжения; N - число рассматриваемых участков избранного контура. При использовании второго правила Кирхгофа важно помнить о направлении обхода контура. Как это делается? Произвольно выберем направление обхода рассматриваемого в задаче контура (по часовой стрелке или против нее). В случае совпадения направления обхода контура с направлением силы тока в рассматриваемом элементе, величина входит в (2) со знаком плюс. ЭДС войдет в сумму правой части выражения (2) со знаком плюс, если при движении вдоль контура, в соответствии с избранным направлением обхода первым мы встречаем отрицательный полюс источника ЭДС.

Используя второе правило Кирхгофа можно получить независимые уравнения для тех контуров цепи, которые не получены наложением уже описанных контуров. Количестов независимых контуров (n) равно:

где p - количество ветвей в цепи; k - число узлов.

Количество независимых уравнений, которые дадут оба правила Кирхгофа равно (s):

Делаем вывод о том, что число независимых уравнений будет равно числу разных токов в исследуемой цепи.

Второе правило Кирхгофа — следствие закона Ома. В принципе любую цепь можно рассчитать, применяя только закон Ома и закон сохранения заряда. Правила Кирхгофа являются всего лишь упрощающими приемами для решения задач, рассматривающих цепи постоянного тока.

Используя правила Кирхгофа для составления уравнений необходимо внимательно следить за расстановкой знаков токов и ЭДС.

Первое и второе правила Кирхгофа дают метод расчета цепи, то есть используя их можно найти все токи в цепи, если известны все ЭДС и сопротивления, в том числе и внутренние сопротивления источников.

Примеры решения задач

ПРИМЕР 1

Задание Как следует записать уравнение для токов, используя первое правило Кирхгофа для узла А, изображенного на рис.1

Решение Прежде чем применять первое правило Кирхгофа определим для себя, что положительными будут токи, которые входят в узел А, тогда выходящие из этого узла токи мы должны будем записать в первом правиле Кирхгофа со знаком минус. Из рис. 1 в узел А входят токи:

Из узла А выходят токи:

Тогда согласно правилу узлов имеем:

Ответ

ПРИМЕР 2

Задание Составьте систему независимых уравнений, используя правила Кирхгофа, которая позволит найти все токи в цепи, представленной на рис.2, если известны все ЭДС и все сопротивления (они указаны на рисунке)?

Решение Направления токов выберем произвольно, обозначим их на рис.1. Пусть через сопротивление течет ток . На рис.2 видно, что в нашей цепи два узла. Это точки A и С. Запишем первое правило Кирхгофа для узла А:

В цепях, состоящих из последовательно соединенных источника и приемника энергии, соотношения между током, ЭДС и сопротивлением всей цепи или, между напряжением и сопротивлением на каком-либо участке цепи определяется законом Ома .

На практике в цепях, токи, от какой-либо точки, идут по разным путям.
Точки, где сходятся несколько проводников, называются узлами, а участки цепи, соединяющие два соседних узла, ветвями.

В замкнутой электрической цепи ни в одной ее точке не могут скапливаться электрические заряды так, как это вызвало бы изменение потенциалов точек цепи. Поэтому электрические заряды притекающие к какому-либо узлу в единицу времени, равны зарядам, утекающим от этого узла за ту же единицу.
Разветвлённая цепь.
В узлеА цепь разветвляется на четыре ветви, которые сходятся в узел В .

Обозначим токи в неразветвленной части цепи -I , а в ветвях соответственно

I1 , I2 , I3 , I4 .

У этих токов в такой цепи будет соотношение:

I = I1+I2+I3+I4;

Cумма токов, подходящих к узловой точке электрической цепи,
равна сумме токов, уходящих от этого узла.



При параллельном соединении резисторов ток проходит по четырем направлениям, что уменьшает общее сопротивление или увеличивает общую проводимость цепи, которая равна сумме проводимостей ветвей.

Обозначим силу тока в неразветвленной ветви буквойI .
Силу тока в отдельных ветвях соответственно I1 , I2 , I3 и I4 .
Напряжение между точками A и B - U .
Общее сопротивление между этими точками - R .

По закону Ома напишем:

I = U/R ; I1 = U/R1 ; I2 = U/R2 ; I3 = U/R3 ; I4 = U/R4 ;

Согласно первому закону Кирхгофа:

I = I1+I2+I3+I4 ; или U/R = U/R1+U/R2+U/R3+U/R4 .

Сократив обе части полученного выражения на U получим:

1/R = 1/R1+1/R2+1/R3+1/R4 , что и требовалось доказать.

Cоотношение для любого числа параллельно соединенных резисторов.
В случае, если в цепи содержится два параллельно соединенных резистора
R1 и R2 , то можно написать равенство:

1/R =1/R1+1/R2 ;

Из этого равенства найдем сопротивление R , которым можно заменить два параллельно соединенных резистора:

Полученное выражение имеет большое практическое применение.
Благодаря этому закону производятся расчёты электрических цепей.

Второй закон Кирхгофа

В замкнутом контуре электрической цепи сумма всех эдс равна
сумме падения напряжения в сопротивлениях того же контура.


E1 + E2 + E3 +...+ En = I1R1 + I2R2 + I3R3 +...+ InRn
. При составлении уравнений выбирают направление обхода цепи и произвольно задаются направлениями токов.

Если в электрической цепи включены два источника энергии, эдс которых совпадают по направлению, т. е. согласно изо1, то эдс всей цепи равна сумме эдс этих источников,
т. е.
E = E1+E2
.

Если же в цепь включено два источника, эдс которых имеют противоположные направления, т. е. включены встречно изо2, то общая эдс цепи равна разности эдс этих источников
Е = Е1-Е2
.


При последовательном включении в электрическую цепь нескольких источников энергии с различным направлением эдс общая эдс равна сумме эдс всех источников.

Складывая эдс одного направления, берут со знаком плюс, а эдс противоположного направления - со знаком минус.

В нашем случае, при встречном включении, положения щупов пришлись на противоположную полярность источника большего напряжения, поэтому на приборе отрицательный знак.

Благодаря этим законам производятся расчёты электрических цепей.
Существует несколько методов расчёта, один из них "Метод узловых напряжений"

При расчете электрических цепей нам часто приходится встречаться с цепями, которые образуют замкнутые контуры. В состав таких контуров, помимо сопротивлений, могут входить еще электродвижущие силы, то есть источники напряжений. На рисунке 1 представлен участок сложной электрической цепи. Задана полярность всех (э. д. с.). Произвольно выбираем положительные направления токов. Обходим контур от точки А в произвольном направлении, например по часовой стрелке. Рассмотрим участок АБ . На этом участке происходит падение потенциала (ток идет от точки с высшим потенциалом к точке с низшим потенциалом).

На участке АБ :

φ А + E 1 – I 1 × r 1 = φ Б .

На участке БВ :

φ Б E 2 – I 2 × r 2 = φ В .

На участке ВГ :

φ В I 3 × r 3 + E 3 = φ Г .

На участке ГА :

φ Г I 4 × r 4 = φ А .

Складывая почленно четыре приведенных уравнения, получим:

φ А + E 1 – I 1 × r 1 + φ Б E 2 – I 2 × r 2 + φ В I 3 × r 3 + E 3 + φ Г I 4 × r 4 = φ Б + φ В + φ Г + φ А

E 1 – I 1 × r 1 – E 2 – I 2 × r 2 – I 3 × r 3 + E 3 – I 4 × r 4 = 0.

Перенеся произведения I × r в правую часть, получим:

E 1 – E 2 + E 3 = I 1 × r 1 + I 2 × r 2 + I 3 × r 3 + I 4 × r 4 .

В общем виде

Это выражение представляет собой . Формула второго закона Кирхгофа показывает, что во всяком замкнутом контуре алгебраическая сумма э. д. с. равна алгебраической сумме падений напряжений. Бывают случаи, когда в замкнутом контуре отсутствуют источники э. д. с., тогда применимо другое определение второго закона Кирхгофа – алгебраическая сумма падений равна нулю.

Видео 1. Второй закон Кирхгофа

Рассмотрим простой замкнутый контур (рисунок 2).

Рисунок 2. Простой замкнутый контур

По второму закону Кирхгофа

E = I × r 0 + I × r = I × (r 0 + r ),

I 3 = I 1 + I 2 . (3)

Имеем три уравнения с тремя неизвестными. Решая их, находим величину и направление токов. Подставляя значение тока I 3 из уравнения (3) в уравнение (1), получим:

6 = 2 × I 1 + 5 × I 1 + 5 × I 2 ;

Сложим уравнения для двух контуров почленно:

(6 = 7 × I 1 + 5 × I 2) + (2 = I 1 – 2 × I 2)

(12 = 14 × I 1 + 10 × I 2) + (10 = 5 × I 1 – 10 × I 2).

Сложив два последних уравнения, имеем:

22 = 19 × I 1 , откуда I 1 = 1,156 А,

подставляем значение I 1 в уравнение (1):

6 = 2 × 1,156 + 5 × I 3 ,

Подставляем значение I 1 в уравнение (2):

2 = 1,156 – 2 × I 2 ,

Знак минус показывает, что действительное направление тока I 2 обратно принятому нами направлению.