Емкостные реле в быту

Емкостный датчик в качестве противоугонного устройства

При несанкционированном проникновении злоумышленника в салон автомобиля срабатывает емкостное реле и разрывает контактную цепь, идущую к замку зажигания (Рис.1). Емкостное реле самоблокируется и включает реле времени, находящееся до этого в ждущем режиме. Реле времени начинает отсчет времени, находящийся в пределах 10...60 с, после чего контакты реле времени включают мощную многотональную звуковую сигнализацию. При желании владельца автомобиля контакты реле времени могут включать электрошоковое устройство, тогда угонщик будет подвержен слабому воздействию электрического тока силой 1...6 мА и напряжением 300....3000 В. Дверные замки автомобиля автоматически закрываются и самоблокируются. Может также включаться радиомаяк, расположенный внутри автомобиля. Эти дополнительные устройства могут быть установлены по желанию автовладельца.

Рис.1

Датчиком емкостного реле служит кусок металлической фольги размером 100x50 мм или же фольгированный текстолит аналогичных размеров. Датчик может быть расположен в салоне автомобиля под сидением водителя, или же выполнен в виде какой-либо декоративной панели, привлекающей угонщика, или, наоборот, спрятанной, и тем самым не заметной для глаз злоумышленника, но к которой угонщик обязательно должен прикоснуться.
Датчиков в салоне автомобиля может быть 1... 10 штук.
Приводится противоугонное устройство в действие микровыключателем, расположенным в салоне автомобиля, известным о месте его нахождения только владельцу транспортного средства.На принципиальной схеме устройства микровыключатель не указан.
Сопротивление катушки K1 от 1 кОм до 175 Ом; число витков катушки - 3400; ток срабатывания составляет 36 мA ток отпускания - 8 мА; напряжение питания - 12 В. Катушка колебательного контура L1 намотана на бумажном каркасе диаметром 8... 10 мм и содержит 26 витков провода ПЭВ-1 диаметром 0,3...0,4 мм, намотанных виток к витку в один слой. Отвод сделан от 7-го витка.

А.Гайдук, г. Борисов

Простое емкостное устройство

Устройство, схема которого показана на рис.2, работает на звуковых частотах. Для увеличения чувствительности здесь в контур генератора НЧ введен полевой транзистор, к затвору которого подключается датчик.


Рис.2

Генератор прямоугольных импульсов со звуковой частотой около 1000 Гц собран на элементах DD 1.1 и DD 1.2. В качестве выходного каскада используется элемент DD 1.3 той же микросхемы К155ЛА3, нагрузкой которого служит телефонный капсюль.

С целью дальнейшего увеличения чувствительности емкостного реле возможно увеличение количества элементов, введенных в RC - цепочку. Однако следует учитывать, что при пяти и больше логических элементах в схеме наладка не усложняется.

Обычное емкостное реле начинает работать сразу после включения. Требуется только подстроить резистор R 1 на пороговую чувствительность.

При отладке данного реле возможны два варианта его работы: срыв или, наоборот, возникновение генерации при введении емкости. Установка требуемого варианта осуществляется подбором переменного резистора R 1. При приближении руки к датчику Е1 подстройкой резистора R 1 добиваются, чтобы расстояние, с которого срабатывало бы емкостное реле, было около 10 - 20 см.

Для подключения исполнительных механизмов к емкостному реле сигнал с элемента DD 1.3 следует подать на электронное реле.

Крылов А.

Ярославская обл.

Емкостное реле для управления освещением

В часто посещаемых помещениях для экономии электроэнергии удобно применить емкостное реле для управления освещением. При входе в помещение, если необходимо включить свет, проходят вблизи емкостного датчика, который подает сигнал в емкостное реле, и лампа включается. Выходя из помещения, если нужно выключить свет, проходят вблизи емкостного датчика на выключение, и реле выключает лампу. В ждущем режиме устройство потребляет ток около 2 мА.

Принципиальная схема емкостного реле изображена на рис.3


Рис.3

Устройство по схеме подобно реле времени, у которого времязадающий узел заменен триггером на логических элементах DD1.1, DD1.2. При включении тумблера S1 через лампу HL1 будет протекать ток, если на базу транзистора VT1 с выхода элемента DD1.1 поступает напряжение высокого уровня. Транзистор VT1 при этом открыт, и тиристор VD6 открывается в начале каждого полупериода напряжения. Триггер переключается от емкостного тока утечки, при приближении человека на некоторое расстояние к одному из емкостных датчиков, если до этого он переключился от приближения к другому. При смене напряжения высокого уровня на базе транзистора VT1 на напряжение низкого уровня тиристор VD6 закроется, и лампа погаснет.

Емкостные датчики Е1 и Е2 представляют собой отрезки коаксиального кабеля (например, РК-100, ИКМ-2), со свободного конца которых на длину около 0.5 м снят экран. Изоляцию с центрального провода снимать не нужно. Край экрана необходимо изолировать. Датчики можно прикрепить к дверной раме. Длину неэкранированной части датчиков и сопротивление резисторов R5. R6 подбирают при налаживании устройства так, чтобы триггер надежно переключался при прохождении человека на расстоянии 5...10 см от датчика.

При налаживании устройства необходимо соблюдать меры предосторожности, так как элементы устройства находятся под напряжением сети.

С. Лобкович, г. Минск

Схема емкостного реле на микросхеме

Что такое емкостное реле? Это электронное реле, срабатывающее при изменении емкости между его датчиком и общим проводом. Чувствительным узлом большинства емкостных реле является генератор электрических колебаний довольно высокой частоты (сотни килогерц и выше). Когда параллельно контуру такого генератора подключается дополнительная емкость, то либо изменяется в определенных пределах частота генератора, либо его колебания срываются вовсе. В любом случае срабатывает пороговое устройство, соединенное с генератором, - оно включает звуковой или световой сигнализатор.

Емкостное реле нередко используют для охраны различных объектов. При приближении к объекту человека реле извещает об этом охрану. Кроме того, оно находит применение в устройствах автоматики.

Схема емкостного реле приведена на рис.4



Рис.4

Устройство собрано на одной интегральной цифровой микросхеме и не содержит намоточных деталей, без которых не обойтись при изготовлении устройств с высокочастотным генератором.

Работает емкостное реле так. Пока емкость между датчиком, подключаемым к гнезду XS 1, относительно общего провода (минус источника питания) мала, на резисторе R 2, а значит, на соединенном с ним входе элемента DD 1.3 формируются короткие импульсы положительной полярности, а на выходе элемента (вывод 4) - такие же импульсы отрицательной полярности. Иначе говоря, напряжение на выходе элемента большую часть времени имеет уровень логической 1, а в течении очень короткого промежутка - уровень логического 0. Конденсатор С5 медленно заряжается через резистор R 3, когда на выходе элемента уровень логической 1, и быстро разряжается через диод VD 1 при появлении уровня логического 0. Поскольку разрядный ток значительно превышает зарядный, напряжение на конденсаторе С5 имеет уровень логического 0, и элемент DD 1.4 закрыт для сигнала звуковой частоты.

При приближении к датчику руки его емкость относительно общего провода увеличится, амплитуда импульсов на резисторе R 2 уменьшится и станет меньше порога включения элемента DD 1.3. На выходе элемента DD 1.3 будет постоянно уровень логической 1, до этого уровня зарядится конденсатор С5. Элемент DD 1.4 начнет пропускать сигнал звуковой частоты, и в капсюле BF 1 раздастся звук.

Чувствительность емкостного реле можно изменять подстроечным конденсатором С3.

Датчик представляет собой металлическую сетку (или пластину) размерами примерно 200 х 200 мм, чтобы обеспечить сравнительно высокую чувствительность реле.

Проверяют и настраивают реле в такой последовательности. Одной рукой берутся за неизолированный конец «земляного» провода и, поворачивая ротор подстроечного конденсатора, устанавливают его в положение, при котором звукового сигнала нет. Теперь при приближение другой руки к датчику в капсюле должен раздаваться звуковой сигнал. Если его нет, можно увеличить емкость конденсатора С3. Если же сигнал вообще не исчезает, следует уменьшить емкость конденсатора С2 или вовсе изъять его из конструкции. Более точным подбором емкости подстроечного конденсатора можно добится срабатывания реле при поднесении руки к датчику на расстоянии более десяти сантиметров.

Если емкостное реле захотите использовать для включения мощной нагрузки, соберите схему на рис.5.


Рис.5

Теперь к элементу DD 1.4 подключен транзистор VT 1, коллекторная цепь которого соединена с управляющим электродом тиристора VS 1. Тиристор, а значит, и его нагрузка могут питаться либо постоянным, либо переменным током. В первом случае после «срабатывания» реле и последующего его «отпускания» (когда от датчика уберут руку) выключить тиристор удастся лишь кратковременным отключением питания его анодной цепи. Во втором варианте тиристор будет выключатся при закрывании транзистора.

Нечаев.И.

г. Курск

Емкостное реле на транзисторах

На рис.6 показана схема простого транзисторного емкостного реле.


Рис.6

Транзисторы VT 1 - VT 3 формируют усилитель электрического сигнала, возникшего в результате наводки от человеческого тела. Конденсатор С1, диоды D 2 и D 3 защищают реле от ложного срабатывания.

Сенсор представляет собой пластину из алюминия или меди размером примерно 10 см х 10 см. Транзисторы VT1, VT3 возможно заменить на КТ3102, КТ815.

При наладке данной схемы, следует соблюдать меры электробезопасности, так как все элементы конструкции находятся под напряжением электросети.

Работа ёмкостных датчиков обычно основана на регистрации изменений параметров генератора, в колебательную систему которого входит ёмкость контролируемого объекта. Простейшие из таких датчиков содержат один LC-генератор на полевом транзисторе и работают по принципу возрастания потребляемого тока или уменьшения напряжения при увеличении ёмкости. Такие устройства при максимальной дальности обнаружения приближающегося объекта не более 0,1 м обладают весьма низкой стабильностью и малой помехоустойчивостью. Более высокие характеристики имеют ёмкостные датчики, схема которых выполнена на основе двух генераторов и работающие по принципу сравнения частоты или фазы колебаний образцового и перестраиваемого (измерительного) генераторов. Например, описанный в . Лучшие из них способны почувствовать приближение человека на расстоянии 2 м. Однако при выполнении на дискретных элементах они получаются слишком громоздкими, а при использовании специализированных микросхем - слишком дорогими.

В предлагаемой статье рассматривается схема ёмкостного датчика, с высокой чувствительностью на микросхеме тонального декодера NJM567 . Эта микросхема и её аналоги (например, NE567) широко используются для обнаружения узкополосных сигналов в диапазоне от 10 Гц до 500 кГц. Они применялись и в системах автоподстройки частоты вращения блока видеоголовок бытовых видеомагнитофонов. Использование встроенного в тональный декодер RC-генератора упрощает схему ёмкостного датчика, а внутренняя петля ФАПЧ этого генератора обеспечивает стабильность и помехоустойчивость датчика.
Дальность обнаружения приближающегося человека - не менее 0,5 м (при длине антенны датчика 1 м), что значительно больше, чем, например, у прибора, выполненного по схеме . В устройстве отсутствуют намоточные изделия (катушки индуктивности), что упрощает его повторение.

Схема ёмкостного датчика изображена на рис. 1. Частотозадающие элементы находящегося в микросхеме DA2 генератора - резистор R6 и конденсатор С5. Сигнал генератора частотой около 15 кГц с вывода 5 микросхемы DA2 подан на фазосдвигающую цепь, образованную подстроечным резистором R5, антенной WA1, конденсатором СЗ и резистором R3. С неё через истоковый повторитель на полевом транзисторе VT1, усилитель на транзисторе VT2 и конденсатор С4 сигнал поступает на вход IN (вывод 3) микросхемы DA2. К выводу 2 этой микросхемы подключён конденсатор С8 фильтра фазового детектора системы ФАПЧ, от ёмкости которого зависит ширина её полосы захвата. Чем ёмкость больше, тем уже полоса.

На второй фазовый детектор микросхемы образцовое напряжение подаётся от генератора с фазовым сдвигом на 90 относительно поступающего на фазовый детектор ФАПЧ. Напряжение на выводе 1 микросхемы (выходе второго детектора), подаваемое на встроенный в неё компаратор напряжения, зависит от фазового сдвига между входным сигналом и сигналом генератора, вносимого рассмотренной выше цепью, которая включает в себя антенну WA1. С7 - конденсатор выходного фильтра фазового детектора. Резистор R8, включённый между выводами 1 и 8 микросхемы, создаёт в характеристике переключения компаратора гистерезис, необходимый для повышения помехоустойчивости. Цепь R7C6 - нагрузка выхода OUT, выполненного по схеме с открытым коллектором.

Далее по схеме ёмкостного датчика сигнал через диод VD2 поступает на цепь из резистора R9 и конденсатора С9 и на вход логического элемента DD1.1. Цепь R10C10 формирует импульс, блокирующий ложное срабатывание датчика в момент включения питания. С выхода элемента DD1.1 сиг- нал поступает через диод VD4 на цепь R11C11, обеспечивающую длительность выходного сигнала датчика не менее заданной, и на соединённые последовательно элементы DD1.2 и DD1.3, формирующие взаимно инверсные выходные сигналы датчика на линиях “Вых. 1” и “Вых. 2”. Высокий уровень сигнала на линии “Вых. 2” и включённый светодиод HL1 свидетельствуют, что в чувствительной зоне находится человек.

Узел питания ёмкостного датчика собран на интегральном стабилизаторе LM317LZ, выходное напряжение которого установлено равным 5 В с помощью резисторов R1 и R2. Входное напряжение может находиться в пределах 10…24 В. Диод VD1 защищает датчик от неправильной полярности источника этого напряжения.
Все детали датчика смонтированы на односторонней печатной плате из фольгированного стеклотекстолита, чертёж которой изображён на рис. 2. Резисторы R1 и R2 - для поверхностного монтажа. Их монтируют на плату со стороны печатных проводников. Подстроечный резистор R5 - СПЗ-19а или его импортный аналог.

Микросхему NJM567D можно заменить на NE567, KIA567, LM567 с различными буквенными индексами, означающими тип корпуса. Если он типа DIP8 (как у NJM567D) или круглый металлический, печатную плату корректировать не придётся. Аналог микросхемы К561ЛЕ5 - CD4001A. Транзистор КП303Е заменяется на BF245, КТ3102Е -на ВС547.
Антенна WA1 - отрезок одножильного изолированного провода сечением 0,5мм2 и длиной 0,3…1,5м. Короткая антенна обеспечивает меньшую чувствительность. Следует иметь в виду, что необходимая ёмкость конденсатора СЗ зависит от собственной ёмкости антенны, а значит, от её длины. Указанная на схеме ёмкость оптимальна для антенны длиной около метра. Чтобы работать с антенной длиной 0,3 м, ёмкость необходимо уменьшить до 30 пф.

Налаживать ёмкостный датчик следует, установив его и антенну там, где предполагается их эксплуатация. При этом следует учитывать, что на порог срабатывания влияет и расположение антенны относительно заземлённых предметов и проводов.
Первоначально движок подстроечного резистора R5 устанавливают в положение максимального сопротивления. После включения питания светодиод HL1 должен оставаться погашенным. В работоспособности датчика можно убедиться по включению этого светодиода в случае прикосновения к антенне рукой. Если ёмкость конденсатора СЗ выбрана правильно, то при переводе движка подстроечного резистора R5 в положение минимального сопротивления светодиод должен включиться и без касания антенны.

Убедившись в работоспособности схемы ёмкостного датчика, его налаживание продолжают по общеизвестной методике, добиваясь требуемого порога срабатывания плавным перемещением движка подстроечного резистора. Желательно делать это с помощью диэлектрической отвёртки, оказывающей минимальное влияние на фазосдвигающие цепи.
Оптимальная настройка соответствует включению светодиода при приближении человека к антенне метровой длины на расстояние 0,5 м, а выключение - при его удалении до 0,6 м. Укорочение антенны до 0,3 м уменьшит эти значения примерно на треть.

Следует заметить, что если ёмкость конденсатора СЗ слишком велика, светодиод HL1 может светиться и в крайнем левом положении движка, а при касании антенны рукой - гаснуть. Это объясняется тем, что устройство работает по балансному принципу и при необходимости можно отрегулировать его на срабатывание при удалении охраняемого объекта из чувствительной зоны.

ЛИТЕРАТУРА
1. Табунщиков В. Волшебное реле. - Моделист-конструктор, 1991, № 1, с. 23.
2. Нечаев И. Ёмкостное реле. - Радио, 1992, №9, с. 48-51.
3. Ершов М. Ёмкостный датчик. - Радио, 2004, №3, с. 41,42.
4. NJM567 Tone Decoder / Phase Locked Loop. www.pdf.datasheet.su/njr/njm567d.pdf
5. Соломеин В. Ёмкостное реле. -Радио, 2010, № 5, с. 38, 39.

В. ТУШНОВ, г. Луганск, Украина
“Радио” №12 2012г.

Датчик движения чаще всего используется для включения освещения, когда вы проходите или находитесь рядом с ним. С его помощью можно хорошо экономить электричество и избавить себя от необходимости щелкать выключателем. Это устройство также используется и в системах сигнализации, для определения нежелательных проникновений. Кроме этого их можно встретить и на производственных линиях, они там нужны для автоматизированного выполнения каких-либо технологических задач. Датчики движения иногда называют датчикам присутствия.

Типы датчиков движения

Датчики движения различают по принципу действия от этого зависит их работа, точность срабатывания и особенности использования. У каждого из них есть сильные и слабые стороны. От конструкции и рода используемого элемента зависит и конечная цена такого датчика.

Датчик движения может быть выполнен в одном корпусе и в разных корпусах (блок управления отдельно от датчика).

Контактные

Самый простой вариант датчика движения - использовать или . Геркон (герметичный контакт) это переключатель который срабатывает при появлении магнитного поля. Суть работы заключается в установки концевого выключателя с нормально-разомкнутыми контактами или геркона на дверь, когда вы её откроете и зайдете в помещение контакты замкнутся, включат реле, а оно включит освещение. Такая схема изображена ниже.

Инфракрасные

Срабатывают от теплового излучения, реагируют на изменение температуры. Когда вы входите в поле зрения такого датчика он срабатывает на тепловое излучение от вашего тела. Недостатком такого способа определения являются ложные срабатывания. Тепловое излучение присуще всему что есть вокруг. Приведем несколько примеров:

1. стоит в помещении с электрообогревателем, который периодически включается и отключается по таймеру или термостату. При включении обогревателя возможны ложные срабатывания. Можно попробовать этого избежать долгой и скрупулезной настройкой чувствительности, а также попыткой направить его так, чтобы в прямой видимости не было обогревателя.

2. При установке на улице возможны срабатывания от порывов тёплого ветра.

В целом эти датчики нормально работают, при этом это самый дешевый вариант. В качестве чувствительного элемента используется PIR-сенсор, он создает электрическое поле пропорционально тепловому излучению.

Но сам по себе сенсор не имеет широкой направленности, поверх него устанавливается линза Френеля.

Правильнее будет сказать - многосегментная линза, или мультилинза. Обратите внимание на окошко такого датчика, оно разбито на секции это и есть сегменты линз, они фокусируют попадающие излучения в узкий пучок и направляют его на чувствительную область датчика. В результате этого на маленькое приемное окошко пироэлектрического сенсора попадают пучки излучений с разных сторон.

Для увеличения эффективности детектирования движения могут устанавливать сдвоенные, или счетвертненные сенсоры или несколько отдельных. Таким образом, расширяется поле зрение прибора.

Исходя из вышесказанного нужно отметить и то, что на датчик не должен попадать свет от лампы, а также в поле его зрения не должно быть ламп накаливания, это также сильный источник ИК-излучения, тогда работа системы в целом будет нестабильной и непредвиденной. ИК-излучения плохо проходят через стекло, поэтому он не сработает, если вы будете идти за окном или стеклянной дверью.

Это самый распространённый вид датчика его можно купить а можно и собрать самому на основе, поэтому рассмотрим его конструкцию подробно.

Как собрать ИК-датчик движения своими руками?

Самый распространенный вариант - это HC-SR501. Его можно купить в магазине радиодеталей, на али-экспресс, часто поставляется в наборах Arduino. Может использоваться как в паре с микроконтроллером, так и самостоятельно. Он представляет собой печатную плату с микросхемой, обвязкой и одним ПИР-сенсором. Последний накрыт линзой, на плате есть два потенциометра, один из них регулирует чувствительность, а второй время которое на выходе датчика присутствует сигнал. При детектировании движения на выходе появляется сигнал и держится установленное время.

Он питается напряжением от 5 до 20 вольт, срабатывает на расстоянии от 3 до 7 метров, а сигнал на выходе держит от 5 до 300 секунд, вы можете продлить этот период, если использовать , микроконтроллер или реле задержки времени. Угол обзора порядка 120 градусов.

На фото изображен датчик в сборе (слева), линзу (справа внизу), обратную сторону платы (справа вверху).

Рассмотрим плату подробнее. На её передней стороне расположен чувствительный элемент. На задней - микросхема, её обвязка, справа два подстроечных резистора, где верхний - время задержки сигнала, а нижний - чувствительность. В нижней правой части джампер для переключения режимов H и L. В режиме L датчик выдает выходной сигнал только она период времени выставленного потенциометром. Режим H выдает сигнал, пока вы находитесь в зоне действия датчика, а когда вы её покидаете сигнал, исчезнет через время заданное верхним потенциометром.

Если вы хотите использовать датчик без микроконтроллеров, тогда соберите эту схему, все элементы подписаны. Схема питается через гасящий конденсатор, напряжение питания ограничено на уровне 12В с помощью стабилитрона. Когда на выходе датчика появляется положительный сигнал реле Р включается через NPN транзистор (например BC547, mje13001-9, КТ815, КТ817 и другие). Можно использовать автомобильное реле или любое другое с катушкой на 12В.

Если вам нужно реализовать какие-то другие функции - можно использовать его в паре с микроконтроллером, например . Ниже представлена схема подключения и программный код.

Ультразвуковые

Излучатель работает на высоких частотах - от 20 кГц до 60 кГц. Отсюда выходит одна неприятность - животные, например собаки, чувствительны к этим частотам, более того они используются для их отпугивания и дрессировки. Такие датчики могут раздражать их и с этим возникают проблемы.

Ультразвуковой датчик движения работает на эффекте Допплера. Излучаемая волна, отражаясь от подвижного объекта, возвращается и принимается приёмником, при этом длина волны (частота) незначительно изменяется. Это детектируется, и датчик выдает сигнал, который используют для управления реле или симмистором и коммутации нагрузки.

Датчик неплохо отрабатывает движения, однако если движения очень медленные - он может не срабатывать. Преимуществом является то, что они не чувствительны к изменениям условий окружающей среды.

Лазерные или фотодатчики

В них есть излучатель (например ИК-светодиод) и приемник (фотодиод аналогичного спектра). Это простой датчик, возможна реализация в двух исполнениях:

1. Излучатель и фотодиод монтируются в проходе (контролируемой зоне) напротив друг друга. Когда вы проходите через него вы заслоняете излучение и оно не достигает приемника, тогда срабатывает датчик и включается реле. Это можно использовать и в системах сигнализации.

2. Излучатель и фотодиод стоят рядом друг с другом, когда вы находитесь в зоне действия датчика излучение отражается от вас и попадает на фотодиод. Это называется также датчиком препятствия, с успехом применяется в робототехнике.

Микроволновый

Состоит также из передатчика и приемника. Первый генерирует сигнал высокой частоты, второй их принимает. Когда вы проходите рядом изменяется частота. Приемник настроен таким образом, что при изменении частоты сигнал усиливается и передается на исполнительный орган, например реле, и происходит включение нагрузки.

Микроволновые датчики движения очень чувствительны, позволяют «увидеть» объект даже за дверью или за стеклом, однако это вызывает и проблемы ложного срабатывания, когда объект находится вне поля предполагаемой видимости.

Это достаточно дорогостоящие датчики, но они реагируют даже на самые незначительные движения.

Подобным образом работают и емкостные приборы. Такая схема изображена ниже.

Как подключить датчик движения?

Можно придумать бесчисленное множество вариантов и схем подключения датчика движения в зависимости от ваших потребностей, иногда нужно чтобы система срабатывала при движении в разных местах, например уличное освещение по пути от дома до ворот и наоборот, в других случаях необходимо принудительное включение или отключение света и т.д. Мы рассмотрим несколько вариантов.

Обычно у датчика движения есть три провода или три клеммы для подсоединения:

1. Приходящая фаза.

2. Фаза, отходящая для питания нагрузки.

Если вам не хватает мощности датчика - используйте промежуточное реле и . Для этого вместо лампочки в нижеуказанных схемах подключаются выводы катушки.

На фото ниже изображены клеммы к которым подсоединяются питающие провода.

Заключение

Использование датчиков движения, как бы это ни звучало, это шаг . Во-первых, это поможет экономить электроэнергию и ресурс ламп. Во-вторых, это избавит от необходимости каждый раз щелкать выключатель. Для освещения на улице при правильной настройки можно сделать так, чтобы свет включался, когда вы подходите к воротам дома.

Если расстояние от ворот до дома 7-10 - можно обойтись и одним датчиком, тогда не придется прокладывать кабель на второй датчик или собирать схему с проходным выключателем.

Как уже было сказано чаще всего встречаются ИК-датчики, их достаточно для простых задач, если вам нужна большая чувствительность или точность - присмотритесь к датчикам других типов.

Что такое емкостные датчики? Это самое обычное электронное реле, срабатывающее при изменении емкости. Чувствительным элементом многих рассмотренных здесь схем являются генераторы высокой частоты от сотен килогерц или больше. Если параллельно контуру этого генератора подсоединить дополнительную емкость, то либо поменяется частота генератора, либо его колебания прекращаются совсем. В любом варианте сработает пороговое устройство, которое включает звуковой или световой сигнализатор. Эти схемы можно применять в различных моделях, которые при встрече с различными препятствиями будут изменять свое движение, в быту - сел в компьютерное кресло включился ноутбук или заиграл музыкальный центр, устройства можно также использовать для включения света в помещениях для построения систем сигнализации и т.п.

Схема работает на звуковых частотах. Для увеличения чувствительности в контур генератора низкой частоты добавлен полевой транзистор.

Генератор прямоугольных импульсов с частотой следования последних 1 кГц выполнен на элементах DD1.1 и DD1.2 . В качестве выходного каскада предназначен DD1.3 , нагрузкой которого является телефонный динамик.

С целью увеличения чувствительности схемы можно добавить количество радиокомпонентов, введенных в RC - цепь .

Схема должна начать работать сразу после включения. Иногда нужно подстроить сопротивление R1 на пороговую чувствительность.

При регулировке реле возможны два варианта его функционирования: срыв или возникновение генерации при появлении емкости. Установка нужного нам схемотехнического варианта выбирается подбором номинала переменного сопротивления R1. При приближении руки к Е1 подстройкой сопротивления R1 делают так, чтобы расстояние, с которого запускалась схема, составляло 10 - 20 сантиметров.

Для включения различных исполнительных механизмов в емкостном реле используем сигнал с выхода элемента DD1.3 .

Для включения света проходят рядом со вторым емкостным преобразователем, а для отключения освещения в помещении с первым.

Срабатывание преобразователя приводит к переключению RS триггера построенного на логических элементах. Емкостные датчики сделаны из отрезков коаксиального кабеля, с конца которых на длину около 50 сантиметров снят экран. Край экрана требуется изолировать. Датчики устанавливают на дверном каркасе. Длину неэкранированной части датчиков и номиналы сопротивлений R5 и R6 подбирают при отладки схемы так, чтобы триггер надежно срабатывал при прохождении биологического объекта на расстоянии 10 сантиметров от датчика.

Пока емкость между датчиком и корпусом мала, на сопротивлении R2, и на входе элемента DD1.3 формируются короткие импульсы положительной полярности, а на выходе элемента такие же импульсы но уже инвертированные. Емкость С5 медленно заряжается через сопротивление R3, когда на выходе элемента имеется уровень логической единицы, и быстро разряжается через диод VD1 при логическом нуле. Т.к разрядный ток выше зарядного, напряжение на емкости С5 имеет уровень логического нуля, и элемент DD1.4 заперт для сигнала звуковой частоты.

При приближении к элементу любого биологического объекта его емкость относительно общего провода возрастает, амплитуда импульсов на сопротивлении R2 падает ниже порога включения DD1.3. На его выходе будет постоянная логическая единица, до этого уровня осуществится наполнение емкостью конденсатор С5. Элемент DD1.4 начнет пропускать сигнал звуковой частоты, и в динамике раздастся звуковой сигнал. Чувствительность емкостного реле можно регулировать подстроечной емкостью С3.

Датчик изготавливается своими руками с использованием металлической сетки с размерами 20 х 20 сантиметров, для хорошего уровня чувствительности реле.


В этой схеме емкостного реле к логическому элементу DD1.4 подсоединен транзистор VT1, в коллекторную цепь которого включен тиристор VS1 управляющий мощной нагрузкой.

Устройство, собранное по схеме ниже, реагирует на присутствие любого проводящего объекта, в том числе и человека. Чувствительность датчика можно регулировать потенциометром. Схема не позволяет обнаруживать движение объектов, но она хороша именно в роли датчика присутствия. Одним из очевидным решением использования в быту емкостного датчика присутствия является самодельная схема автоматическое открывания дверей. Для этих целей схема устройства должна быть размещена с передней части двери.


Основой этого емкостного устройства являются осциллятор с T1 и одновибратор. Осциллятор это типовой генератор Клаппа стабильной частоты. Поверхность емкостного датчика действует как конденсатор для колебательного контура, и в этой конфигурации частота будет около 1 МГц.

Время переключения схемы можно изменять в широком диапазоне с помощью переменного резистора Р2. Не надо подносить металлические предметы близко к датчику, т.к емкостное реле останется в закрытом состоянии. Эта схема также может быть применена в роли детектора агрессивных жидкостей. Главное достинство здесь заключается в том, что поверхность емкостного датчика не вступает в прямой контакт с жидкостью.

На полевом транзисторе выполнен маломощный генератор с частотой следования импульсов 465 кГц, а на биполярном транзисторе электронный ключ для срабатывания реле К1, контактами которого включается исполнительный механизм. Диод используется в схеме при случайном изменении полярности подсоединяемого источника питания.

Радиус действия емкостного реле и чувствительность, зависит от регулировки С1 и конструкции датчика, если вас заинтересовала это разработка то вы можете скачать журнал моделист конструктор по ссылке чуть выше.

Основа схемы маломощный генератор ВЧ. К колебательному контуру L1C4 подсоединена металлическая пластина. Поднесенная к ней ладонь руки или другая часть тела человека представляет собой вторую обкладку конденсатора C д . тем выше, чем больше площадь его обкладок и меньше расстояние между ними. L1 намотайте на каркасе 8-9 мм, склеенном из бумаги. Катушка СОСТОИТ ИЗ 22-25 витков провода ПЭВ-1 0,3-0,4, намотанных виток к витку. Отвод необходимо сделать от 5-7-го витка, считая от начала.

Настройка реле

Подсоедините в коллекторную цепь биполяярного транзистора V1 миллиамперметр на 10 мА и между точкой соединений миллиамперметра с катушкой L1 и эмиттером второго транзистора подсоединить конденсатор 0,01-0,5 мкФ. Металлическую пластину временно отключите от генератора. Следя за показаниями миллиамперметра, кратковременно замыкаем L1C4 . Коллекторный ток V1 дрезко падает: с 2,5-3 до 0,5-0,8 мА. Максимальные показания соответствуют генерации, наименьшие - ее отсутствию. Если генератор возбуждается, присоедините к нему пластину и медленно поднесите ладонь. Коллекторный ток должен снизиться до уровня 0,5-0,8 мА.

Слабые изменения тока усиливается с помощью двухкаскадного УНЧ на V2 , V3 . А для того чтобы можно было управлять нагрузкой бесконтактным методом, конечная ступень схемы построена на тринисторе V5 .


Движок переменного сопротивления R4 устанавливают в крайнее нижнее положение. И затем его медленно двигают вверх до тех пор, пока не включится индикатор H1 . Теперь подносим ладонь к пластине и проверяем работу устройства.

Диод V4 в цепи тринистора V5 исключает появление импульса обратного напряжения. А V6 и сопротивление R7 защищают тринистор от пробоя. Для тринистора с U о6р . = 400 В элементы V6 и R7 можно убрать из схемы.

Сегодня никого не удивишь различными по назначению и эффективности электронными устройствами превентивного предупреждения, которые оповещают людей или включают охранную сигнализацию задолго до непосредственного контакта нежелательного гостя с охраняемым рубежом (территорией). Многие из таких узлов, описанных в литературе, на мой взгляд, интересны, но усложнены. В противовес им простая электронная схема бесконтактного емкостного датчика (рис.1), собрать которую в силах даже начинающий радиолюбитель. Устройство имеет многочисленные возможности, одну из которых - высокую чувствительность по входу - используют для предупреждения о приближении какого-либо одушевленного объекта (к примеру, человека) к сенсору Е1.
В основе схемы - два элемента микросхемы К561ТЛ1 включенных как инверторы. Эта микросхема имеет в своем составе четыре однотипных элемента с функцией 2И-НЕ с триггера Шмитта с гистерезисом (задержкой) на входе и инверсией по выходу. Функциональное обозначение - петля гистерезиса показывает

Рис. 1. Электрическая схема бесконтактного емкостного датчика в таких элементах внутри их обозначения. Применение К561ТЛ1 в данной схеме оправдано тем, что она (и К561 серия микросхем, в частности) имеет очень малые рабочие токи, высокую помехозащищенность (до 45% от уровня напряжения питания), работает в широком диапазоне питающего напряжения (от 3 до 15 В), имеет защищенность по входу от потенциала статического электричества и кратковременного превышения входных уровней и многие другие преимущества, которые позволяют широко использовать ее в радиолюбительских конструкциях, не требуя каких-либо особых мер предосторожности и защиты.
Кроме того, К561ТЛ1 позволяет включать свои независимые логические элементы параллельно, в качестве буферных элементов, вследствие чего мощность выходного сигнала кратно увеличивается. Триггеры Шмита - это, как правило, бистабильные схемы, способные работать с медленно возрастающими входными сигналами, в том числе с примесью помех, при этом обеспечивающие по выходу крутые фронты импульсов, которые можно передавать в последующие узлы схемы для стыковки с другими ключевыми элементами и микросхемами.
Микросхема К561ТЛ1 (как, впрочем, и К561ТЛ2) может выделять Управляющий сигнал (в том числе цифровой) для других устройств с нечеткого входного импульса. Зарубежный аналог К561ТЛ1 - CD4093B.
Предельное состояние, близкое к низкому логическому уровню. На выходе DD1.1 - высокий уровень, на выходе DD1.2 - опять низкий. Транзистор VT1, выполняющий роль усилителя тока, закрыт. Пьезоэлектрический капсюль НА1 (с внутренним генератором 3Ч) неактивен.
К сенсору Е1 подключена антенна - в ее качестве используют автомобильную телескопическую антенну. При нахождении человека рядом с антенной изменяется емкость между штырем антенны и полом. От этого переключаются элементы DD1.1, DD1.2 в противоположное состояние. Для переключения узла человек среднего роста должен находиться (проходить) рядом с антенной длиной 35 см на расстоянии до 1,5 м.
На выводе 4 микросхемы появляется высокий уровень напряжения, вследствие этого транзистор VT1 открывается и звучит капсюль НА1.
Подбором емкости конденсатора С1 можно изменить режим работы элементов микросхемы. Так, при уменьшении емкости С1 до 82-120 пФ узел работает иначе. Теперь звуковой сигнал звучит, только пока на вход DD1.1 воздействует наводка переменного напряжения - прикосновение человека.
Электрическую схему (рис.1) можно использовать и как основу для триггерного сенсорного узла. Для этого исключают постоянный резистор R1, экранированный провод, а сенсором являются контакты микросхемы 1 и 2.
Последовательно с R1 подключают экранированный провод (кабель РК-50, РК-75, экранированный провод для сигналов 34 - подходят все типы) длиной 1-1,5 м, экран соединяется с общим проводом. Центральный (неэкранированный) провод на конце соединяется со штырем антенны.
При соблюдении указанных рекомендаций, применении указанных в схеме типов и номиналов элементов узел генерирует звуковой сигнал частотой около 1 кГц (зависит от типа капсюля НА1) при приближении человека к штырю антенны на расстояние 1,5-1 м. Триггерного эффекта нет. При отходе человека от антенны звук в капсюле НА1 прекращается.
Эксперимент проводился также с животными - кошкой и собакой: на их приближение к сенсору - антенне - узел не реагирует.Принцип действия в данном устройстве основан на изменении емкости сенсора-антенны Е1 между ней и «землей» (общим проводом, всем тем, что относится к заземляющему контуру, - в данном случае это пол и стены помещения). При приближении человека эта емкость существенно изменяется, что оказывается достаточным для срабатывания микросхемы К561ТЛ1.
Практическое применение узла трудно переоценить. В авторском варианте устройство смонтировано рядом с дверной коробкой многоквартирного жилого дома. Входная дверь - металлическая.
Громкость сигнала 34, излучаемого капсюлем НА1, достаточна для того, чтобы услышать его на закрытой лоджии (она сопоставима с громкостью квартирного звонка).
Источник питания - стабилизированный с напряжением 9-15 В, с хорошей фильтрацией напряжения пульсаций по выходу. Ток потребления ничтожно мал в режиме ожидания (несколько микроампер) и увеличивается до 22-28 мА при активной работе излучателя НА1.Бестрансформаторный источник применять нельзя из-за вероятности поражения электрическим током. Оксидный конденсатор С2 действует как дополнительный фильтр по питанию, его тип К50-35 или аналогичный, на рабочее напряжение не ниже напряжения источника питания.
При эксплуатации узла выявлены интересные особенности. Так, напряжение питания узла влияет на его работу. При увеличении напряжения питания до 15 В в качестве сенсора-антенны используется только обыкновенный многожильный неэкранированный электрический медный провод сечением 1-2 мм длиной 1 м. Никакого экрана и резистора R1 в таком случае не надо. Электрический медный провод подсоединяется непосредственно к выводам 1 и 2 элемента DD1.1. Эффект оказывается тем же.
При изменении фазировки сетевой вилки источника питания узел катастрофически теряет чувствительность и способен работать только как сенсор (реагирует на прикосновение к Е1). Это актуально при любом значении напряжения источника питания в диапазоне 9-15 В. Очевидно, что второе назначение данной схемы - обыкновенный сенсор (или сенсор-триггер).
Эти нюансы следует учитывать при повторении узла. Однако при правильном подключении, описанном здесь, получается важная и стабильная часть охранной сигнализации, обеспечивающей безопасность жилищу, предупреждающей хозяев еще до возникновения нештатной ситуации.
Монтаж элементов осуществляется компактно на плате из стеклотекстолита.
Корпус для устройства любой из диэлектрического (непроводящего) материала. Для контроля включения питания устройство может быть снабжено индикаторным светодиодом, подключенным параллельно источнику питания.


Рис. 2. Фото готового устройства с автомобильной антенной в виде емкостного датчика
Налаживание при точном соблюдении рекомендаций не требуется. Возможно, при других вариантах сенсоров и антенн узел проявит себя в ином качестве. Если экспериментировать с длиной экранирующего кабеля, длиной и площадью сенсора-антенны Е1 и изменением напряжения питания узла, возможно, потребуется скорректировать сопротивление резистора R1 в широких пределах от 0,1 до 100 МОм. Для уменьшения чувствительности узла увеличивают емкость конденсатора С1. Если это не приносит результатов, параллельно С1 включают постоянный резистор сопротивлением 5-10 МОм.
Неполярный конденсатор С1 типа КМ6. Постоянный резистор R2 - МЛТ-0,25. Резистор R1 типа ВС-0,5, ВС-1. Транзистор VT1 необходим для усиления сигнала с выхода элемента DD1.2. Без этого транзистора капсюль НА1 звучит слабо. Транзистор VT1 можно заменить на КТ503, КТ940, КТ603, КТ801 с любым буквенным индексом-
Капсюль-излучатель НА1 может быть заменен на аналогичный с встроенным генератором 34 и рабочим током не более 50 мА, например FMQ-2015B, КРХ-1212В и аналогичными.
Благодаря применению капсюля со встроенным генератором узел проявляет интересный эффект - при близком приближении человека к сенсору-антенне Е1 звук капсюля монотонный, а при удалении (или дальнем приближении человека на расстоянии более 1,5 м) капсюль издает стабильный по характеру, прерывистый звук в соответствии с изменением уровня потенциала на выходе элемента DD1.2.
Если в качестве НА1 применить капсюль со встроенным генератором прерываний 34, например KPI-4332-12, звук будет напоминать сирену при относительно большом расстоянии человека от сенсора-антенны и прерывистый сигнал стабильного характера при максимальном приближении.
Некоторым минусом устройства можно считать отсутствие избирательности «свой/чужой» - так, узел будет сигнализировать о приближении к Е1 любого лица, в том числе вышедшего «за булкой хлеба» хозяина квартиры.
Основа работы узла - электрические наводки и изменение емкости максимально полезны при эксплуатации в больших жилых массивах с развитой сетью электрических коммуникаций. Возможно, что такой прибор будет бесполезен в лесу, в поле и везде, где нет электрических коммуникаций осветительной сети 220 В. Такова особенность устройства.
Экспериментируя с данным узлом и микросхемой К561ТЛ1 (даже в штатном ее включении), можно получить бесценный опыт и реальные, простые в повторении, но оригинальные по сути и функциональным особенностям электронные устройства.