Как сделать реактивный двигатель в домашних условиях. Один отзыв на “Бесклапанный пульсирующий двигатель своими руками” Самодельный пульсирующий воздушно реактивный двигатель

Из полученного е-mail (копия оригинала):

«Уважаемый Виталий!Ни магли бы Вы нимного больше рассказать

о модельных ТРД, что это ваабще такое и с чем их едят?»

Начнём с гастрономии, турбины ни с чем не едят, ими восхищаются! Или, перефразируя Гоголя на современный лад: «Ну какой же авиамоделист не мечтает построить реактивный истребитель?!».

Мечтают многие, но не решаются. Много нового, еще больше непонятного, много вопросов. Часто читаешь в различных форумах, как представители солидных ЛИИ и НИИ с умным видом нагоняют страха и пытаются доказать, как это всё сложно! Сложно? Да, может быть, но не невозможно! И доказательство тому - сотни самодельных и тысячи промышленных образцов микротурбин для моделизма! Надо только подойти к этому вопросу философски: всё гениальное - просто. Поэтому и написана эта статья, в надежде поубавить страхов, приподнять вуаль неизвестности и придать вам больше оптимизма!

Что такое турбореактивный двигатель?

Турбореактивный двигатель (ТРД) или газотурбинный привод основан на работе расширения газа. В середине тридцатых годов одному умному английскому инженеру пришла в голову идея создания авиационного двигателя без пропеллера. По тем временам - просто признак сумасшествия, но по этому принципу работают все современные ТРД до сих пор.

На одном конце вращающегося вала расположен компрессор, который нагнетает и сжимает воздух. Высвобождаясь из статора компрессора, воздух расширяется, а затем, попадая в камеру сгорания, разогревается там сгорающим топливом и расширяется ещё сильней. Так как деваться этому воздуху больше некуда, он с огромной скоростью стремится покинуть замкнутое пространство, протискиваясь при этом сквозь крыльчатку турбины, находящейся на другом конце вала и приводя её во вращение. Так как энергии этой разогретой воздушной струи намного больше, чем требуется компрессору для его работы, то ее остаток высвобождается в сопле двигателя в виде мощного импульса, направленного назад. И чем больше воздуха разогревается в камере сгорания, тем он быстрее стремится её покинуть, ещё сильнее разгоняя турбину, а значит и находящийся на другом конце вала компрессор.

На этом же принципе основаны все турбонагнетатели воздуха для бензиновых и дизельных моторов, как двух, так и четырёхтактных. Выхлопными газами разгоняется крыльчатка турбины, вращая вал, на другом конце которого расположена крыльчатка компрессора, снабжающего двигатель свежим воздухом.

Принцип работы - проще не придумаешь. Но если бы всё было так просто!

ТРД можно четко разделить на три части.

  • А. Ступень компрессора
  • Б. Камера сгорания
  • В. Ступень турбины

Мощность турбины во многом зависит от надёжности и работоспособности её компрессора. В принципе бывают три вида компрессоров:

  • А. Аксиальный или линейный
  • Б. Радиальный или центробежный
  • В. Диагональный

А. Многоступенчатые линейные компрессоры получили большое распространение только в современных авиационных и промышленных турбинах. Дело в том, что достичь приемлемых результатов линейным компрессором можно, только если поставить последовательно несколько ступеней сжатия одну за другой, а это сильно усложняет конструкцию. К тому же, должен быть выполнен ряд требований по устройству диффузора и стенок воздушного канала, чтобы избежать срыва потока и помпажа. Были попытки создания модельных турбин на этом принципе, но из-за сложности изготовления, всё так и осталось на стадии опытов и проб.

Б. Радиальные, или центробежные компрессоры . В них воздух разгоняется крыльчаткой и под действием центробежных сил компримируется - сжимается в спрямительной системе-статоре. Именно с них начиналось развитие первых действующих ТРД.

Простота конструкции, меньшая подверженность к срывам воздушного потока и сравнительно большая отдача всего одной ступени были преимуществами, которые раньше толкали инженеров начинать свои разработки именно с этим типом компрессоров. В настоящее время это основной тип компрессора в микротурбинах, но об этом позже.

В. Диагональный , или смешанный тип компрессора, обычно одноступенчатый, по принципу работы похож на радиальный, но встречается довольно редко, обычно в устройствах турбонаддувов поршневых ДВС.

Развитие ТРД в авиамоделизме

Среди авиамоделистов идёт много споров, какая же турбина в авиамоделизме была первой. Для меня первая авиамодельная турбина, это американская TJD-76. В первый раз я увидел этот аппарат в 1973 году, когда два полупьяных мичмана пытались подключить газовый баллон к круглой штуковине, примерно 150 мм в диаметре и 400 мм длинной, привязанной обыкновенной вязальной проволокой к радиоуправляемому катеру, постановщику целей для морской пехоты. На вопрос: «Что это такое?» они ответили: «Это мини мама! Американская… мать её так, не запускается…».

Намного позже я узнал, что это Мини Мамба, весом 6,5 кг и с тягой примерно 240 N при 96000 об/мин. Разработана она была ещё в 50-х годах как вспомогательный двигатель для лёгких планеров и военных дронов. Особенность этой турбины в том, что в ней использовался диагональный компрессор. Но в авиамоделизме она широкого применения так и не нашла.

Первый «народный» летающий двигатель разработал праотец всех микротурбин Курт Шреклинг в Германии. Начав больше двадцати лет назад работать над созданием простого, технологичного и дешевого в производстве ТРД, он создал несколько образцов, которые постоянно совершенствовались. Повторяя, дополняя и улучшая его наработки, мелкосерийные производители сформировали современный вид и конструкцию модельного ТРД.

Но вернёмся к турбине Курта Шреклинга. Выдающаяся конструкция с деревянной крыльчаткой компрессора, усиленной углеволокном. Кольцевая камера сгорания с испарительной системой впрыска, где по змеевику длинной примерно в 1 м подавалось топливо. Самодельное колесо турбины из 2,5 миллиметровой жести! При длине всего в 260 мм и диаметре 110 мм, двигатель весил 700 грамм и выдавал тягу в 30 Ньютон! Это до сих пор самый тихий ТРД в мире. Потому как скорость покидания газа в сопле двигателя составляла всего 200 м/с.

На основе этого двигателя было создано несколько вариантов наборов для самостоятельной сборки. Самым известным стал FD-3 австрийской фирмы Шнайдер-Санчес.

Ещё 10 лет назад авиамоделист стоял перед серьёзным выбором - импеллер или турбина?

Тяговые и разгонные характеристики первых авиамодельных турбин оставляли желать лучшего, но имели несравненное превосходство перед импеллером - они не теряли тягу с нарастанием скорости модели. Да и звук такого привода был уже настоящим «турбинным», что сразу очень оценили копиисты, а больше всего публика, непременно присутствующая на всех полётах. Первые Шреклингские турбины спокойно поднимали в воздух 5-6 кг веса модели. Старт был самым критическим моментом, но в воздухе все остальные модели отходили на второй план!

Авиамодель с микротурбиной тогда можно было сравнить с автомобилем, постоянно двигающимся на четвёртой передаче: ее было тяжело разогнать, но зато потом такой модели не было уже равных ни среди импеллеров, ни среди пропеллеров.

Надо сказать, что теория и разработки Курта Шреклинга способствовали к тому, что развитие промышленных образцов, после издания его книг, пошло по пути упрощения конструкции и технологии двигателей. Что, в общем то, и привело к тому, что этот тип двигателя стал доступным для большого круга авиамоделистов со средним размером кошелька и семейного бюджета!

Первые образцы серийных авиамодельных турбин были JPX-Т240 французской фирмы Vibraye и японская J-450 Sophia Precision. Они были очень похожи как по конструкции, так и по внешнему виду, имели центробежную ступень компрессора, кольцевую камеру сгорания и радиальную ступень турбины. Французская JPX-Т240 работала на газе и имела встроенный регулятор подачи газа. Она развивала тягу до 50 N, при 120.000 оборотах в минуту, а вес аппарата составлял 1700 гр. Последующие образцы, Т250 и Т260 имели тягу до 60 N. Японская София работала в отличие от француженки на жидком топливе. В торце ее камеры сгорания стояло кольцо с распылительными форсунками, это была первая промышленная турбина, которая нашла место в моих моделях.

Турбины эти были очень надёжными и несложными в эксплуатации. Единственным недостатком были их разгонные характеристики. Дело в том, что радиальный компрессор и радиальная турбина относительно тяжелы, то есть имеют в сравнении с аксиальными крыльчатками большую массу и, следовательно, больший момент инерции. Поэтому разгонялись они с малого газа на полный медленно, примерно 3-4 секунды. Модель реагировала на газ соответственно ещё дольше, и это надо было учитывать при полётах.

Удовольствие было не дешевым, одна София стоила в 1995 году 6.600 немецких марок или 5.800 «вечно зелёных президентов». И надо было обладать очень хорошими аргументами, что бы доказать супруге, что турбина для модели намного важнее, чем новая кухня, и что старое семейное авто может протянуть ещё пару лет, а вот с турбиной ждать ну никак нельзя.

Дальнейшим развитием этих турбин является турбина Р-15, продаваемая фирмой Thunder Tiger.

Отличие её в том, что крыльчатка турбины у неё теперь вместо радиальной - аксиальная. Но тяга так и осталась в пределах 60 N, так как вся конструкция, ступень компрессора и камера сгорания, остались на уровне позавчерашнего дня. Хотя по своей цене она является настоящей альтернативой многим другим образцам.


В 1991 году два голландца, Бенни ван де Гур и Хан Еннискенс, основали фирму AMT и в 1994 г выпустили первую турбину 70N класса - Pegasus. Турбина имела радиальную ступень компрессора с крыльчаткой от турбонагнетателя фирмы Garret, 76 мм в диаметре, а также очень хорошо продуманную кольцевую камеру сгорания и аксиальную ступень турбины.

После двух лет тщательного изучения работ Курта Шреклинга и многочисленных экспериментов они добились оптимальной работы двигателя, установили пробным путём размеры и форму камеры сгорания, и оптимальную конструкцию колеса турбины. В конце 1994 года на одной из дружеских встреч, после полётов, вечером в палатке за бокалом пива, Бенни в разговоре хитро подмигнул и доверительно сообщил, что следующий серийный образец Pegasus Mk-3 «дует» уже 10 кг, имеет максимальные обороты 105.000 и степень сжатия 3,5 при расходе воздуха 0,28 кг/с и скорости выхода газа в 360 м/с. Масса двигателя со всеми агрегатами составляла 2300 г, турбина была 120 мм в диаметре и 270 мм длиной. Тогда эти показатели казались фантастическими.

По существу, все сегодняшние образцы копируют и повторяют в той или иной степени, заложенные в этой турбине агрегаты.

В 1995 году, вышла в свет книга Томаса Кампса «Modellstrahltriebwerk» (Модельный реактивный двигатель), с расчётами (больше заимствованными в сокращённой форме из книг К. Шреклинга) и подробными чертежами турбины для самостоятельного изготовления. С этого момента монополия фирм-производителей на технологию изготовления модельных ТРД закончилась окончательно. Хотя многие мелкие производители просто бездумно копируют агрегаты турбины Кампса.

Томас Кампс путём экспериментов и проб, начав с турбины Шреклинга, создал микротурбину, в которой объединил все достижения в этой области на тот период времени и вольно или невольно ввёл для этих двигателей стандарт. Его турбина, больше известная как KJ-66 (KampsJetеngine-66mm). 66 мм – диаметр крыльчатки компрессора. Сегодня можно увидеть различные названия турбин, в которых почти всегда указан либо размер крыльчатки компрессора 66, 76, 88, 90 и т.д., либо тяга - 70, 80, 90, 100, 120, 160 N.

Где-то я прочитал очень хорошее толкование величины одного Ньютона: 1 Ньютон – это плитка шоколада 100 грамм плюс упаковка к ней. На практике часто показатель в Ньютонах округляют до 100 грамм и условно определяют тягу двигателя в килограммах.

Конструкция модельного ТРД


  1. Крыльчатка Компрессора (радиальная)
  2. Спрямительная система Компрессора (статор)
  3. Камера сгорания
  4. Спрямительная система турбины
  5. Колесо турбины (аксиальная)
  6. Подшипники
  7. Туннель вала
  8. Сопло
  9. Конус сопла
  10. Передняя крышка Компрессора (диффузор)

С чего начать?

Естественно у моделиста сразу возникают вопросы: С чего начать? Где взять? Сколько стоит?

  1. Начать можно с наборов (Kit-ов). Практически все производители на сегодняшний день предлагают полный ассортимент запасных частей и наборов для постройки турбин. Самыми распространёнными являются наборы повторяющие KJ-66. Цены наборов, в зависимости от комплектации и качества изготовления колеблются в пределах от 450 до 1800 Евро.
  2. Можно купить готовую турбину, если по карману, и вы умудритесь убедить в важности такой покупки супругу, не доводя дело до развода. Цены на готовые двигатели начинаются от 1500 Евро для турбин без автостарта.
  3. Можно сделать самому. Не скажу что это самый идеальный способ, он же не всегда самый быстрый и самый дешёвый, как на первый взгляд может показаться. Но для самодельщиков самый интересный, при условии, что есть мастерская, хорошая токарно-фрезерная база и прибор для контактной сварки также имеется в наличии. Самым трудным в кустарных условиях изготовления является центровка вала с колесом компрессора и турбиной.

Я начинал с самостоятельной постройки, но в начале 90-х просто не было такого выбора турбин и наборов для их постройки как сегодня, да и понять работу и тонкости такого агрегата удобней при его самостоятельном изготовлении.

Вот фотографии самостоятельно изготовленных частей для авиамодельной турбины:

Кто желает поближе ознакомится с устройством и теорией Микро-ТРД, тому я могу только посоветовать следующие книги, с чертежами и расчётами:

  • Kurt Schreckling. Strahlturbine fur Flugmodelle im Selbstbau. ISDN 3-88180-120-0
  • Kurt Schreckling. Modellturbinen im Eigenbau. ISDN 3-88180-131-6
  • Kurt Schreckling. Turboprop-Triebwerk. ISDN 3-88180-127-8
  • Thomas Kamps Modellstrahltriebwerk ISDN 3-88180-071-9

На сегодняшний день мне известны следующие фирмы, выпускающие авиамодельные турбины, но их становится всё больше и больше: AMT, Artes Jet, Behotec, Digitech Turbines, Funsonic, FrankTurbinen, Jakadofsky, JetCat, Jet-Central, A.Kittelberger, K.Koch, PST- Jets, RAM, Raketeturbine, Trefz , SimJet, Simon Packham, F.Walluschnig, Wren-Turbines. Все их адреса можно найти в Интернете.

Практика использования в авиамоделизме

Начнём с того, что турбина у вас уже есть, самая простая, как ей теперь управлять?

Есть несколько способов заставить работать ваш газотурбинный двигатель в модели, но лучше всего сначала построить небольшой испытательный стенд наподобие этого:

Ручной старт (Manual start ) - cамый простой способ управления турбиной.

  1. Турбина сжатым воздухом, феном, электрическим стартером разгоняется до минимальных рабочих 3000 об/мин.
  2. В камеру сгорания подаётся газ, а на свечу накаливания - напряжение, происходит воспламенение газа и турбина выходит на режим в пределах 5000-6000 об/мин. Раньше мы просто поджигали воздушно-газовую смесь у сопла и пламя «простреливало» в камеру сгорания.
  3. На рабочих оборотах включается регулятор хода, управляющий оборотами топливного насоса, который в свою очередь подаёт в камеру сгорания горючее - керосин, дизельное топливо или отопительное масло.
  4. При наступлении стабильной работы подача газа прекращается, и турбина работает только на жидком топливе!

Смазка подшипников ведётся обычно с помощью топлива, в которое добавлено турбинное масло, примерно 5%. Если смазочная система подшипников раздельная (с масляным насосом), то питание насоса лучше включать перед подачей газа. Отключать его лучше в последнюю очередь, но НЕ ЗАБЫВАТЬ выключить! Если вы считаете, что женщины это слабый пол, то посмотрите, во что они превращаются при виде струи масла, вытекающей на обивку заднего сиденья семейного автомобиля из сопла модели.

Недостаток этого самого простого способа управления - практически полное отсутствие информации о работе двигателя. Для измерения температуры и оборотов нужны отдельные приборы, как минимум электронный термометр и тахометр. Чисто визуально можно только приблизительно определить температуру, по цвету каления крыльчатки турбины. Центровку, как у всех крутящихся механизмов, проверяют по поверхности кожуха монетой или ногтем. Прикладывая ноготь к поверхности турбины, можно почувствовать даже мельчайшие вибрации.

В паспортных данных двигателей всегда даются их предельные обороты, например 120.000 об/мин. Это предельно допустимая величина при эксплуатации, пренебрегать которой не следует! После того как в 1996 году у меня разлетелся самодельный агрегат прямо на стенде и колесо турбины, разорвав обшивку двигателя, пробило насквозь 15-ти миллиметровую фанерную стенку контейнера, стоящего в трёх метрах от стенда, я сделал для себя вывод, что без приборов контроля разгонять самопальные турбины опасно для жизни! Расчёты по прочности показали потом, что частота вращения вала должна была лежать в пределах 150.000. Так что лучше было ограничить рабочие обороты на полном газу до 110.000 – 115.000 об/мин.

Ещё один важный момент. В схему управления топливом ОБЯЗАТЕЛЬНО должен быть включен аварийный закрывающий вентиль, управляемый через отдельный канал! Делается это для того, что бы в случае вынужденной посадки, морковно-внепланового приземления и прочих неприятностей прекратить подачу топлива в двигатель во избежание пожара.

Start c ontrol (Полуавтоматический старт).

Что бы неприятностей, описанных выше, не произошло на поле, где (ни дай бог!) ещё и зрители вокруг, применяют довольно хорошо зарекомендовавший себя Start control . Здесь управление стартом - открытие газа и подачу керосина, слежение за температурой двигателя и оборотами ведёт электронный блок ECU (E lectronic- U nit- C ontrol) . Ёмкость для газа, для удобства, уже можно расположить внутри модели.

К ECU для этого подключены температурный датчик и датчик оборотов, обычно оптический или магнитный. Кроме этого ECU может давать показания о расходе топлива, сохранять параметры последнего старта, показания напряжения питания топливного насоса, напряжение аккумуляторов и т.д. Всё это можно потом просмотреть на компьютере. Для программирования ECU и снятия накопленных данных служит Manual Тerminal (терминал управления).

На сегодняшний день самое большое распространение получили два конкурирующих продукта в этой области Jet-tronics и ProJet. Какому из них отдать предпочтение - решает каждый сам, так как тяжело спорить на тему что лучше: Мерседес или БМВ?

Работает все это следующим образом:

  1. При раскручивании вала турбины (сжатый воздух/фен/электростартер) до рабочих оборотов ECU автоматически управляет подачей газа в камеру сгорания, зажиганием и подачей керосина.
  2. При движении ручки газа на вашем пульте сначала происходит автоматический вывод турбины на рабочий режим с последующим слежением за самыми важными параметрами работы всей системы, начиная от напряжения аккумуляторов до температуры двигателя и величины оборотов.

Автоматический старт (Automatic start)

Для особо ленивых процедура запуска упрощена до предела. Запуск турбины происходит с пульта управления тоже через ECU одним переключателем. Здесь уже не нужен ни сжатый воздух, ни стартер, ни фен!

  1. Вы щёлкаете тумблером на вашем пульте радиоуправления.
  2. Электростартер раскручивает вал турбины до рабочих оборотов.
  3. ECU контролирует старт, зажигание и вывод турбины на рабочий режим с последующим контролем всех показателей.
  4. После выключения турбины ECU ещё несколько раз автоматически прокручивает вал турбины электростартером для снижения температуры двигателя!

Самым последним достижением в области автоматического запуска стал Керостарт. Старт на керосине, без предварительного прогрева на газе. Поставив свечу накаливания другого типа (более крупную и мощную) и минимально изменив подачу топлива в системе, удалось полностью отказаться от газа! Работает такая система по принципу автомобильного обогревателя, как на «Запорожцах». В Европе пока только одна фирма переделывает турбины с газового на керосиновый старт, не зависимо от фирмы производителя.

Как вы уже заметили, на моих рисунках в схему включены ещё два агрегата, это клапан управления тормозами и клапан управления уборкой шасси. Это не обязательные опции, но очень полезные. Дело в том, что у «обычных» моделей при посадке, пропеллер на маленьких оборотах является своего рода тормозом, а у реактивных моделей такого тормоза нет. К тому же, у турбины всегда есть остаточная тяга даже на «холостых» оборотах и скорость посадки у реактивных моделей может быть намного выше, чем у «пропеллерных». Поэтому сократить пробежку модели, особенно на коротких площадках, очень помогают тормоза основных колёс.

Топливная система

Второй странный атрибут на рисунках, это топливный бак. Напоминает бутылку кока-колы, не правда ли? Так оно и есть!

Это самый дешевый и надёжный бак, при условии, что используются многоразовые, толстые бутылки, а не мнущиеся одноразовые. Второй важный пункт, это фильтр на конце всасывающего патрубка. Обязательный элемент! Фильтр служит не для того, чтобы фильтровать топливо, а для того, чтобы избежать попадания воздуха в топливную систему! Не одна модель была уже потеряна из-за самопроизвольного выключения турбины в воздухе! Лучше всего зарекомендовали себя здесь фильтры от мотопил марки Stihl или им подобные из пористой бронзы. Но подойдут и обычные войлочные.

Раз уж заговорили о топливе, можно сразу добавить, что жажда у турбин большая, и потребление топлива находится в среднем на уровне 150-250 грамм в минуту. Самый большой расход конечно же приходится на старт, зато потом рычаг газа редко уходит за 1/3 своего положения вперёд. Из опыта можно сказать, что при умеренном стиле полёта трёх литров топлива вполне хватает на 15 мин. полётного времени, при этом в баках остаётся ещё запас для пары заходов на посадку.

Само топливо - обычно авиационный керосин, на западе известный под названием Jet A-1.

Можно, конечно, использовать дизельное топливо или ламповое масло, но некоторые турбины, такие как из семейства JetCat, переносят его плохо. Также ТРД не любят плохо очищенное топливо. Недостатком заменителей керосина является большое образование копоти. Двигатели приходится чаще разбирать для чистки и контроля. Есть случаи эксплуатации турбин на метаноле, но таких энтузиастов я знаю только двоих, они выпускают метанол сами, поэтому могут позволить себе такую роскошь. От применения бензина, в любой форме, следует категорически отказаться, какими бы привлекательными ни казались цена и доступность этого топлива! Это в прямом смысле игра с огнём!

Обслуживание и моторесурс

Вот и следующий вопрос назрел сам собой - обслуживание и ресурс.

Обслуживание в большей степени заключается в содержании двигателя в чистоте, визуальном контроле и проверке на вибрацию при старте. Большинство авиамоделистов оснащают турбины своего рода воздушным фильтром. Обыкновенное металическое сито перед всасывающим диффузором. На мой взгляд - неотъемлемая часть турбины.

Двигатели, содержащиеся в чистоте, с исправной системой смазки подшипников служат безотказно по 100 и более рабочих часов. Хотя многие производители советуют после 50 рабочих часов присылать турбины на контрольное техническое обслуживание, но это больше для очистки совести.

Первая реактивная модель

Ещё коротко о первой модели. Лучше всего, чтобы это был «тренер»! Сегодня на рынке множество турбинных тренеров, большинство из них это модели с дельтовидным крылом.

Почему именно дельта? Потому, что это очень устойчивые модели сами по себе, а если в крыле использован так называемый S-образный профиль, то и посадочная скорость и скорость сваливания минимальные. Тренер должен, так сказать, летать сам. А вы должны концентрировать внимание на новом для вас типе двигателя и особенностях управления.

Тренер должен иметь приличные габариты. Так как скорости на реактивных моделях в 180-200 км/ч - само собой разумеющиеся, то ваша модель будет очень быстро удаляться на приличные расстояния. Поэтому за моделью должен быть обеспечен хороший визуальный контроль. Лучше, если турбина на тренере крепится открыто и сидит не очень высоко по отношению к крылу.

Хорошим примером, какой тренер НЕ ДОЛЖЕН быть, является самый распространённый тренер – «Kangaroo». Когда Фирма FiberClassics (сегодня Composite-ARF) заказывала эту модель, то в основе концепта была заложена в первую очередь продажа турбин "София", и как важный аргумент для моделистов, что сняв крылья с модели, её можно использовать в качестве испытательного стенда. Так, в общем, оно и есть, но производителю хотелось показать турбину, как на витрине, поэтому и крепится турбина на своеобразном «подиуме». Но так как вектор тяги оказался приложен намного выше ЦТ модели, то и сопло турбины пришлось задирать кверху. Несущие качества фюзеляжа были этим почти полностью съедены, плюс малый размах крыльев, что дало большую нагрузку на крыло. От других предложенных тогда решений компоновки заказчик отказался. Только использование Профиля ЦАГИ-8, ужатого до 5% дало более-менее приемлемые результаты. Кто уже летал на Кенгуру, тот знает, что эта модель для очень опытных пилотов.

Учитывая недостатки Кенгуру, был создан спортивный тренер для более динамичных полётов «HotSpot». Эту модель отличает более продуманная аэродинамика, и летает «Огонёк» намного лучше.

Дальнейшим развитием этих моделей стал «BlackShark». Он рассчитывался на спокойные полёты, с большим радиусом разворотов. С возможностью широкого спектра пилотажа, и в то же время, с хорошими парительными качествами. При выходе из строя турбины, эту модель можно посадить как планер, без нервов.

Как видите, развитие тренеров пошло по пути увеличения размеров (в разумных пределах) и уменьшении нагрузки на крыло!

Так же отличным тренером может служить австрийский набор из бальзы и пенопласта, Super Reaper. Стоит он 398 Евро. В воздухе модель выглядит очень хорошо. Вот мой самый любимый видеоролик из серии Супер Рипер: http://www.paf-flugmodelle.de/spunki.wmv

Но чемпионом по низкой цене на сегодняшний день является «Spunkaroo». 249 Евро! Очень простая конструкция из бальзы, покрытой стеклотканью. Для управления моделью в воздухе достаточно всего двух сервомашинок!

Раз уж зашла речь о сервомашинках, надо сразу сказать, что стандартным трехкилограммовым сервам в таких моделях делать нечего! Нагрузки на рули у них огромные, поэтому ставить надо машинки с усилием не меньше 8 кг!

Подведём итог

Естественно у каждого свои приоритеты, для кого-то это цена, для кого-то готовый продукт и экономия времени.

Самым быстрым способом завладеть турбиной, это просто её купить! Цены на сегодняшний день для готовых турбин класса 8 кг тяги с электроникой начинаются от 1525 Евро. Если учесть, что такой двигатель можно сразу без проблем брать в эксплуатацию, то это совсем не плохой результат.

Наборы, Kit-ы. В зависимости от комплектации, обычно набор из спрямляющей системы компрессора, крыльчатки компрессора, не просверленного колеса турбины и спрямляющей ступени турбины, в среднем стоит 400-450 Евро. К этому надо добавить, что всё остальное надо либо покупать, либо изготовить самому. Плюс электроника. Конечная цена может быть даже выше, чем готовая турбина!

На что надо обратить внимание при покупке турбины или kit-ов – лучше, если это будет разновидность KJ-66. Такие турбины зарекомендовали себя как очень надёжные, да и возможности поднятия мощности у них ещё не исчерпаны. Так, часто заменив камеру сгорания на более современную, или поменяв подшипники и установив спрямляющие системы другого типа, можно добиться прироста мощности от нескольких сот грамм до 2 кг, да и разгонные характеристики часто намного улучшаются. К тому же, этот тип турбин очень прост в эксплуатации и ремонте.

Подведём итог, какого размера нужен карман для постройки современной реактивной модели по самым низким европейским ценам:

  • Турбина в сборе с электроникой и мелочами - 1525 Евро
  • Тренер с хорошими полётными качествами - 222 Евро
  • 2 сервомашинки 8/12 кг - 80 Евро
  • Приёмник 6 каналов - 80 Евро

Итого, Ваша мечта : около 1900 Евро или примерно 2500 зелёных президентов!

Я собираю модель, имитирующую настоящий реактивный мини двигатель, даже если мой вариант электрический. На самом деле всё просто и каждый может построить реактивный двигатель своими руками в домашних условиях.

То, как я спроектировал и построил самодельный реактивный двигатель — не лучший способ сделать это. Я могу представить миллион способов и схем, как создать лучшую модель, более реалистичную, более надежную и более простую в изготовлении. Но сейчас я собрал такую.

Основные части реактивного модельного двигателя:

  • Двигатель постоянного тока достаточно сильный и минимум на 12 вольт
  • Источник постоянного тока не менее 12 вольт (в зависимости от того, какой у вас двигатель постоянного тока).
  • Реостат, такой же какой продаётся для настройки яркости лампочек.
  • Коробка передач с маховиком, встречается во многих автомобильных игрушках. Лучше всего, если корпус редуктора сделан из металла, потому что пластик может плавиться на таких высоких скоростях.
  • Металлический лист, который можно разрезать, чтобы сделать лопасти вентилятора.
  • Амперметр или вольтметр.
  • Потенциометр примерно на 50К.
  • Катушка электромагнита из соленоида или любого другого источника.
  • 4 диода.
  • 2 или 4 постоянных магнита.
  • Картон, чтобы собрать корпус, похожий на корпус реактивного двигателя.
  • Наполнитель кузовов для авто, для создания экстерьера.
  • Жесткий провод, чтобы поддерживать все. Обычно я использую провода из дешевых вешалок. Они достаточно сильны и достаточно гибки, чтобы придать им нужную форму.
  • Клей. Для большинства деталей я предпочитаю горячий клей, но сейчас подойдёт практически любой клей.
  • Белая, серебряная и черная краска.

Шаг 1: Присоедините двигатель постоянного тока к маховику коробки передач


Основа модели моего реактивного двигателя очень проста. Присоедините двигатель постоянного тока к коробке передач. Идея заключается в том, что мотор приводит в движение ту часть коробки передач, которая была прикреплена к колесам игрушечной машинки. Поместите пластиковый рычаг, чтобы он ударялся о маленькую шестерню маховика, и она издавала шум. Некоторые коробки передач уже оснащены этим устройством, а некоторые нет.

Шаг 2: Соедините магниты и катушку для датчика

Поместите 2 или 4 постоянных магнита на главный вал таким образом, чтобы катушка могла находиться рядом с ними, когда они вращаются. Поместите их так, чтобы шаблон полярности был — + — +. Идея состоит в том, что магниты будут проходить близко к катушке и генерировать небольшое количество тока, которое мы будем использовать для перемещения датчика. Но чтобы это сработало, вам нужно поместить 4 диода в мостовую конфигурацию, чтобы преобразовать переменный ток, который мы генерируем, в постоянный.

Загуглите «диодный мост», чтобы найти об этом больше информации. Также для калибровки датчика до нужной чувствительности, вам необходимо поместить потенциометр между катушкой и датчиком.

Шаг 3: Реостат для управления скоростью

Нам нужно контролировать скорость двигателя. Для этого поместите реостат между розеткой и источником питания. Если вы не знаете, как это сделать, загуглите, как подключить реостат к лампочкам. Но вместо лампочки мы поставим блок питания.

Не пытайтесь сделать это, если вы не уверены на 100%. Мы имеем дело с большим током и использование неподходящего источника питания может вывести его и строя. Чем проще блок питания, тем лучше. Альтернатива — найти реостат постоянного тока, чтобы мы могли контролировать напряжение после подачи питания. Я не смог найти такой ни в одном магазине, поэтому использую реостат для лампочек. Но если вы сможете найти такой, который будет работать с двигателем постоянного тока, то возьмите его. Идея состоит в том, чтобы просто контролировать, какой ток поступает на двигатель, так что это будет нашим дросселем.

Шаг 4: Вентилятор

Вентилятор вы можете сделать так, как захотите. Я вырезал каждое лезвие из тонкого металлического листа и склеил их. Вы можете сделать их из картона и затем покрасить. Или, если у вас есть доступ к 3D принтеру, вы можете напечатать 3d-вентилятор. На www.thingiverse.com есть отличные трёхмерные модели вентиляторов.

Шаг 5: Корпус

Вы можете сделать корпус из картона, а затем, чтобы придать форму, добавить внешний заполнитель. Вам придется много шлифовать, так что это тяжелая и грязная работа. Когда вы всё сгладите, закрасьте корпус глянцевой белой краской.

Внутренняя часть двигателя должна быть окрашена в черный цвет. Передняя часть двигателя обычно имеет серебристый край, который вы, по желанию, можете нарисовать.

Шаг 6: Механизм стартера

Стартер и ручки подачи топлива связаны механически. Стартер имеет выключатель, который подключает двигатель к источнику питания. Этот переключатель также может быть активирован рычагом управления подачей топлива, когда он находится в рабочем положении.

Пружина стартера должна быть нагружена таким образом, чтобы она хотела вернуться в нормальное положение, и блокировала стартовое положение только в том случае, если рычаг управления подачей топлива находится в отключенном положении.

Идея состоит в том, чтобы стартер оставался в исходном положении, пока вы не переместите рычаг подачи топлива в рабочее положение, и теперь рычаг управления подачей топлива будет держать переключатель включенным. Также топливный рычаг является частью основания реостата. Реостат должен быть установлен таким образом, чтобы можно было вращать не только часть ручки, которая должна вращаться, но и всю основу реостата. Эта база — то, что контроль топлива двигает для увеличения скорости, когда он находится в рабочем положении. Это сложно объяснить и поэтому, чтобы лучше понять концепцию, вы должны посмотреть третью часть видео.

Пульсирующий воздушно-реактивный двигатель (ПуВРД) – это одна из трех основных разновидностей воздушно-реактивных двигателей (ВРД), особенностью которой является пульсирующий режим работы. Пульсация создает характерный и очень громкий звук, по которому легко узнать эти моторы. В отличие от других типов силовых агрегатов ПуВРД имеет максимально упрощенную конструкцию и небольшой вес.

Строение и принцип действия ПуВРД

Пульсирующий воздушно-реактивный двигатель – это полый канал, открытый с двух сторон. С одной стороны – на входе – установлен воздухозаборник, за ним – тяговый узел с клапанами, дальше расположена одна или несколько камер сгорания и сопло, через которое выходит реактивный поток. Поскольку работа двигателя циклична, можно выделить основные ее такты:

  • такт впуска, во время которого входной клапан открывается, и в камеру сгорания под действием разряжения в ней попадает воздух. В это же время через форсунки впрыскивается топливо, в результате чего образуется топливный заряд;
  • полученный топливный заряд воспламеняется от искры свечи зажигания, в процессе горения образуются газы с высоким давлением, под действием которого закрывается впускной клапан;
  • при закрытом клапане продукты сгорания выходят через сопло, обеспечивая реактивную тягу. Вместе с тем в камере сгорания при выходе отработанных газов образуется разряжение, входной клапан автоматически открывается и впускает во внутрь новую порцию воздуха.

Входной клапан двигателя может иметь разные конструкции и внешний вид. Как вариант, он может быть выполнен в виде жалюзи – прямоугольных пластин, закрепленных на раме, которые под действием перепада давления открываются и закрываются. Другая конструкция имеет форму цветка с металлическими «лепестками», расположенными по кругу. Первый вариант более эффективный, зато второй более компактный и может использоваться на небольших по размеру конструкциях, например, при авиамоделизме.

Подача топлива осуществляется форсунками, которые имеют обратный клапан. Когда давление в камере сгорания снижается, подается порция топлива, когда же давление увеличивается за счет горения и расширения газов, подача топлива прекращается. В некоторых случаях, например на маломощных моторах от авиамоделей, форсунок может и не быть, а система подачи топлива при этом напоминает карбюраторный двигатель.

Свеча зажигания расположена в камере сгорания. Она создает серию разрядов, и когда концентрация топлива в смеси достигает нужного значения, топливный заряд воспламеняется. Поскольку двигатель имеет небольшие размеры, его стенки, выполненные из стали, в процессе работы быстро нагреваются и могут поджигать топливную смесь не хуже свечи.

Нетрудно понять, что для запуска ПуВРД нужен первоначальный «толчок», при котором первая порция воздуха попадет в камеру сгорания, то есть такие двигатели нуждаются в предварительном разгоне.

История создания

Первые официально зарегистрированные разработки ПуВРД относятся ко второй половине XIX века. В 60-е годы сразу двое изобретателей независимо друг от друга сумели получить патенты на новый тип двигателя. Имена этих изобретателей – Телешов Н.А. и Шарль де Луврье. В то время их разработки не нашли широкого применения, но уже в начале ХХ века, когда для самолетов подыскивали замену поршневым двигателям, на ПуВРД обратили внимание немецкие конструкторы. Во время Второй мировой войны немцы активно использовали самолет-снаряд ФАУ-1, оснащенный ПуВРД, что объяснялось простотой конструкции этого силового агрегата и его дешевизной, хотя по своим рабочим характеристикам он уступал даже поршневым двигателям. Это был первый и единственный раз в истории, когда этот тип двигателя использовался в массовом производстве самолетов.

После окончания войны ПуВРД остались «в военном деле», где нашли применение в качестве силового агрегата для ракет типа «воздух-поверхность». Но и здесь со временем они утратили свои позиции из-за ограничения по скорости, необходимости первоначального разгона и низкой эффективности. Примерами использования ПуВРД являются ракеты Fi-103, 10Х, 14Х, 16Х, JB-2. В последние годы наблюдается возобновление интереса к этим двигателям, появляются новые разработки, направленные на его усовершенствование, так что, возможно, в скором будущем ПуВРД вновь станет востребованным в военной авиации. На данный момент пульсирующий воздушно-реактивный двигатель возвращают к жизни в области моделирования, благодаря использованию в исполнении современных конструкционных материалов.

Особенности ПуВРД

Главной особенностью ПуВРД, которая отличает его от его «ближайших родственников» турбореактивного (ТРД) и прямоточного воздушно-реактивного двигателя (ПВРД), является наличие впускного клапана перед камерой сгорания. Именно этот клапан не пропускает обратно продукты сгорания, определяя их направление движения через сопло. В других типах моторов нет необходимости в клапанах – там воздух поступает в камеру сгорания уже под давлением за счет предварительно сжатия. Этот, на первый взгляд, незначительный нюанс играет огромную роль в работе ПуВРД с точки зрения термодинамики.

Второе отличие от ТРД – это цикличность работы. Известно, что в ТРД процесс сжигания топлива проходит практически беспрерывно, что и обеспечивает ровную и равномерную реактивную тягу. ПуВРД работает циклично, создавая колебания внутри конструкции. Для достижения максимальной амплитуды необходимо синхронизировать колебания всех элементов, чего можно добиться путем подбора нужной длины сопла.

В отличие от прямоточного воздушно реактивного двигателя пульсирующий воздушно реактивный двигатель может работать даже на низких скоростях и находясь в неподвижном положении, то есть когда нет встречного потока воздуха. Правда, его работа в таком режиме не способна обеспечить величину реактивной тяги, необходимой для пуска, поэтому самолеты и ракеты, оснащенные ПуВРД, нуждаются в первоначальном ускорении.

Маленькое видео запуски и работы ПуВРД.

Типы ПуВРД

Кроме обычного ПуВРД в виде прямолинейного канала с входным клапаном, что описывались выше, есть и его разновидности: бесклапанный и детонационный.

Бесклапанный ПуВРД, как понятно по его названию, не имеет входного клапана. Причиной его появления и использования стал тот факт, что клапан является довольно уязвимой деталью, которая очень быстро выходит из строя. В этом же варианте «слабое звено» устранено, поэтому и срок службы мотора продлен. Конструкция бесклапанного ПуВРД имеет форму буквы U с концами, направленными назад по ходу реактивной тяги. Один канал длиннее, он «отвечает» за тягу; второй короче, по нему поступает воздух в камеру сгорания, а при горении и расширении рабочих газов часть их выходит через этот канал. Такая конструкция позволяет осуществлять лучшую вентиляцию камеры сгорания, не допускает утечки топливного заряда через входной клапан и создает дополнительную, пусть и незначительную, тягу.

без клаппаный вариант исполнения ПуВРД
без клапанный U-образный ПуРВД

Детонационный ПуВРД предполагает сжигание топливного заряда в режиме детонации. Детонация предусматривает резкое повышение давления продуктов горения в камере сгорания при постоянном объеме, а сам объем увеличивается уже при движении газов по соплу. В этом случае повышается термический КПД двигателя в сравнении не только с обычным ПуВРД, но и с любым другим двигателем. На данный момент этот тип моторов не используется, а находится на стадии разработок и исследований.

детонационный ПуРВД

Достоинства и недостатки ПуВРД, сфера применения

Основными преимуществами пульсирующих воздушно-реактивных двигателей можно считать их простую конструкцию, что тянет за собой их невысокую стоимость. Именно эти качества и стали причиной их использования в качестве силовых агрегатов на военных ракетах, беспилотных самолетах, летающих мишенях, где важны не долговечность и сверхскорость, а возможность установки простого, легкого и дешевого мотора, способного развить нужную скорость и доставить объект к цели. Эти же качества принесли ПуВРД популярность среди любителей авиамоделизма. Легкие и компактные двигатели, которые при желании можно сделать самостоятельно или же купить по приемлемой цене, прекрасно подходят для моделей самолетов.

Недостатков у ПуВРД немало: повышенный уровень шума при работе, неэкономный расход топлива, неполное его сгорание, ограниченность по скорости, уязвимость некоторых конструктивных элементов, таки как входной клапан. Но, несмотря на такой внушительный перечень минусов, ПуВРД по-прежнему незаменимы в своей потребительской нише. Они – идеальный вариант для «одноразовых» целей, когда нет смысла устанавливать более эффективные, мощные и экономичные силовые агрегаты.




Самое сложное в изготовлении и самое важное для работы турбины - это ступень компрессора. Обычно для его сборки требуется точный обрабатывающий инструмент с ЧПУ или ручным приводом. К счастью, компрессор работает при низкой температуре и может быть напечатан на 3D-принтере.

Еще одна вещь, которую обычно очень трудно воспроизвести в домашних условиях, это так называемая «сопловая лопатка» или просто NGV. Путем проб и ошибок автор нашел способ, как сделать это, не используя сварочный аппарат или другие экзотические инструменты.

Что понадобится:
1) 3D-принтер, способный работать с нитью PLA. Если у вас есть дорогой, такой как Ultimaker – это замечательно, но более дешевый, такой как Prusa Anet, тоже подойдет;
2) У вас должно быть достаточное количество PLA, чтобы напечатать все части. ABS не подойдет для этого проекта, так как он слишком мягкий. Вероятно, можете использовать PETG, но это не проверялось, так что делайте это на свой страх и риск;
3) Жестяная банка соответствующего размера (диаметр 100 мм, длина 145 мм). Предпочтительно банка должна иметь съемную крышку. Вы можете взять обычную банку (скажем, от кусочков ананаса), но тогда вам нужно будет сделать для нее металлическую крышку;
4) Лист из оцинкованного железа. Толщина 0,5 мм является оптимальной. Вы можете выбрать другую толщину, но у вас могут возникнуть трудности с изгибом или шлифовкой, поэтому будьте готовы. В любом случае Вам понадобится как минимум короткая лента из оцинкованного железа толщиной 0,5 мм, чтобы сделать проставку кожуха турбины. Подойдет 2 шт. Размером 200 х 30 мм;
5) Лист нержавеющей стали для изготовления колеса турбины, колеса NGV и кожуха турбины. Опять толщина 0,5 мм является оптимальной.
6) Твердый стальной стержень для изготовления вала турбины. Осторожно: мягкая сталь здесь просто не работает. Вам понадобится хотя бы немного углеродистой стали. Твердые сплавы будут еще лучше. Диаметр вала составляет 6 мм. Вы можете выбрать другой диаметр, но затем вам нужно будет найти подходящие материалы для изготовления ступицы;
7) 2 шт. 6х22 подшипники 626zz;
8) патрубки 1/2" длиной 150 мм и два концевых фитинга;
9) сверлильный станок;
10) Точило
11) дремель (или что-то похожее)
12) Ножовка по металу, плоскогубцы, отвертку, плашку М6, ножницы, тиски и т. д.;
13) кусок трубы из меди или нержавеющей стали для распыления топлива;
14) Набор болтов, гаек, хомутов, виниловых трубок и прочего;
15) пропан или бутановая горелка

Если вы хотите запустить двигатель, вам также понадобятся:

16) Баллон с пропаном. Существуют бензиновые или керосиновые двигатели, но заставить их работать на этих видах топлива немного сложно. Лучше начать с пропана, а потом решить, хотите ли вы перейти на жидкое топливо или вы уже довольны газовым топливом;
17) Манометр, способный измерять давление в несколько мм водяного столба.
18) Цифровой тахометр для измерения оборотов турбины
19) Стартер. Для запуска реактивного двигателя можно использовать:
Вентилятор (100 Вт или более). Лучше центробежный)
электродвигатель (мощностью 100 Вт или более, 15000 об / мин; Вы можете использовать свой дремель здесь).

Делаем ступицу

Ступица будет сделана из:
1/2 " патрубок длиной 150 мм;
два 1/2 "штуцера для шлангов;
и два подшипника 626zz;
Ножовкой, отрежьте «елочки» от штуцеров, и используйте сверло, чтобы увеличить оставшиеся отверстия. Вставьте подшипники в гайки и навинтите гайки на патрубок. Ступица готова.










Делаем вал

Теория (и опыт в некоторой степени) говорит, что нет никакой разницы, делаете ли Вы вал из мягкой стали, твердой стали или нержавеющей стали. Так что выбирайте тот, который более доступен для Вас.

Если вы ожидаете получить приличную тягу от турбины, лучше использовать стальной стержень диаметром 10 мм (или больше). Однако на момент написания статьи был вал всего 6 мм.

Нарежьте резьбу M6, с одной стороны, длиною 35 мм. Далее надо нарезать резьбу с другого конца стержня таким образом, чтобы, когда стержень вставлялся в ступицу (подшипники упираются в конец патрубка затягиваются с помощью гаек, которые вы сделали из штутцеров для шланга) и когда стопорные гайки завинчиваются до конца резьбы на обеих сторонах, между гайками и подшипниками остается небольшой зазор. Это очень сложная процедура. Если резьба слишком короткая, а продольный люфт слишком велик, можно нарезать резьбу чуть больше дальше. Но если резьба кажется слишком длинной (а продольного зазора вообще нет), исправить это будет невозможно.

Как вариант- валы от лазерного принтера, они точно 6 мм в диаметре. Их недостаток в том, что их предел составляет 20-25000 об / мин. Если вы хотите более высокие обороты - используйте более толстые стержни.






3D-печать матриц колеса турбины и NGV

Для изготовления колеса турбины, а точнее его лопастей используются пресс-матрицы.
Форма лезвия становится более гладкой, если прижимать лопасть не к окончательной форме за один шаг (проход), а к некоторой промежуточной форме (1-й проход) и только затем - к окончательной форме (2-й проход). Поэтому есть STL для обоих типов пресс-матриц. Для 1-го прохода и для второго.

Вот файлы STL матриц для колеса NGV и файлы STL для матриц колеса турбины:

Изготовление рабочих колес













В этой конструкции используются 2 вида стальных колес. А именно: турбинное колесо и колесо NGV. Для их изготовления используют нержавеющую сталь. Если бы они были изготовлены из легкого или оцинкованного материала, их едва хватило бы, чтобы показать, как работает двигатель.

Вы можете вырезать диски из металлического листа, а затем просверлить отверстие в центре, но, скорее всего, вы не попадете в центр. Поэтом просверлите отверстие в листе металла, а затем приклеить бумажный шаблон, чтобы отверстие в металле и место для отверстия в бумажном шаблоне совпали. Вырежьте металл по шаблону.

Просверлите вспомогательные отверстия. (Обратите внимание, что центральные отверстия уже должны быть просверлены. Также обратите внимание, что колесо турбины имеет только центральное отверстие.)

Также неплохо бы оставить немного припуска при резке металла, а затем обточить кромку дисков, используя сверлильный станок и точило.
На этом этапе может быть лучше сделать несколько резервных дисков. Далее будет понятно почему.

Формирование лопастей






Нарезанные диски трудно поместить в матрицу для формовки. Используйте плоскогубцы, чтобы немного повернуть лопасти. Диски с предварительно закрученными лопатками намного легче формуются матрицами. Зажмите диск между половинами пресса и сожмите в тиски. Если матрицы были предварительно смазаны машинным маслом- все пройдет гораздо легче.

Тиски - довольно слабый пресс, так что, скорее всего, вам нужно будет ударить узел молотком, чтобы сжать его дальше. Используйте несколько деревянных подушек, чтобы не сломать пластиковые матрицы.

Двух этапное формирование (использование матриц 1-го прохода и матриц 2-го прохода для финализации формы) дает определенно лучшие результаты.

Делаем опору





















Файл документа с шаблоном для опоры находится здесь:

Вырежьте деталь из листа нержавеющей стали, просверлите необходимые отверстия и согните деталь, как показано на фотографиях.

Делаем делаем набор металлических проставок










Если бы у вас есть токарный станок, вы можете сделать все проставки на нем. Другой способ сделать это - вырезать несколько плоских дисков из листа металла, положить их один на другой и плотно закрепить их болтами, чтобы получить объемную деталь.

Используйте здесь лист из мягкой (или оцинкованной) стали толщиной 1 мм.

Документы с шаблонами для проставок находятся здесь:

Вам понадобятся 2 маленьких диска и 12 больших. Количество приведено для листа металла толщиной 1 мм. Если вы используете более тонкий или более толстый, вам нужно будет отрегулировать количество дисков, чтобы получить правильную общую толщину.
Отрежьте диски и просверлите отверстия. Обточите диски одинакового диаметра, как описано выше.

Опорная шайба







Поскольку опорная шайба удерживает всю сборку NGV, Вы должны использовать здесь более толстый материал. Вы можете использовать подходящую стальную шайбу или лист (черный) толщиной не менее 2 мм.

Шаблон для опорной шайбы:

Сборка внутренней части NGV





Теперь у вас есть все детали для сборки NGV. Установите их на ступицу, как показано на фотографиях.

Турбина нуждается в некотором давлении для нормальной работы. А чтобы не допустить свободного распространения горячих газов, нам нужен так называемый «турбинный кожух». В противном случае газы будут терять давление сразу после прохождения через NGV. Для правильного функционирования кожух должен соответствовать турбине + небольшой зазор. Поскольку у нас турбинное колесо и колесо NGV имеют одинаковый диаметр, нам нужно что-то, чтобы обеспечить необходимый зазор. Это что-то - проставка кожуха турбины. Это просто полоса металла, которая обернута вокруг колеса NGV. Толщина этого листа определяет величину зазора. Используйте 0,5 мм здесь.

Просто нарежьте полосу шириной 10 мм и длиной 214 мм из листа любой стали толщиной 0,5 мм.

Сам турбинный кожух будет куском металла, по диаметру колеса NGV. Или лучше пара штук. Здесь у вас больше свободы выбора толщины. Кожух - это не просто полоса, поскольку у нее есть ушки прикрепления.

Файл документации с шаблоном для кожуха турбины находится здесь:






Наденьте проставку кожуха на лопасти NGV. Закрепите с помощью стальной проволоки. Найдите способ зафиксировать проставку, чтобы она не двигалась при удалении провода. Вы можете использовать пайку.

Затем удалите проволоку, и накрутите кожух турбины на проставку. Снова используйте проволоку, чтобы плотно обернуть.








Делайте, как показано на фотографиях. Единственным соединением между NGV и ступицей являются три винта M3. Это ограничивает тепловой поток от горячего NGV к холодной ступице и не дает перегреваться подшипникам.

Проверьте может ли турбина вращаться свободно. Если нет - произведите выравнивание кожуха NGV, изменив положение регулировочных гаек на трех винтах M3. Изменяйте наклон NGV, пока турбина не сможет свободно вращаться.

Делаем камеру сгорания


















Наклейте этот шаблон поверх металлического листа. Просверлите отверстия и обрежьте форму. Здесь нет необходимости использовать нержавеющую сталь. Сверните конус. Для для того, чтобы он не разворачивался, загните его.
Передняя часть камеры находится здесь:

Снова используйте этот шаблон, чтобы сделать конус. Используйте долото, чтобы сделать клиновые прорези, и затем сверните в конус. Закрепите конус с помощью загиба. Обе части удерживаются вместе только трением двигателе. Поэтому не нужно думать, как их закрепить на этом этапе.

Рабочее колесо




Рабочее колесо состоит из двух частей:
диск с лопастями и кожух

Это крыльчатка Курта Шреклинга, которая была сильно изменена мной, чтобы быть более терпимой к продольным смещениям. Обратите внимание на лабирит, предотвращающий возврат воздуха из-за противодавления. Распечатайте обе части и приклейте покрытие на диск с лопастями. Неплохие результаты можно получить, используя акриловую эпоксидную смолу.

Статор компрессора (диффузор)























Эта деталь очень сложной формы. И когда другие детали могут быть (по крайней мере, теоретически) сделаны без использования точного оборудования, это невозможно. Что еще хуже, эта часть в наибольшей степени влияет на эффективность компрессора. Это означает, что тот факт, будет ли весь двигатель работать или нет, сильно зависит от качества и точности диффузора. Вот почему даже не пытайтесь сделать это вручную. Сделайте это на принтере.

Для удобства 3D-печати статор компрессора разделен на несколько частей. Вот файлы STL:

3D распечатать и собрать, как показано на фотографиях. Обратите внимание, что гайка с трубной резьбой 1/2" должна быть прикреплена к центральному корпусу статора компрессора. Она используется для удержания втулки на месте. Гайка крепится с помощью 3х винтов М3.
Шаблон, где просверлить отверстия в гайке:

Также обратите внимание на теплозащитный конус из алюминиевой фольги. Он используется для предотвращения размягчения частей PLA из-за теплового излучения от вкладыша сгорания. В качестве источника алюминиевой фольги здесь можно использовать любую банку из под пива.

Вам понадобится консервная банка длиной 145 мм и диаметром 100 мм. Лучше, если вы можете использовать банку с крышкой. В противном случае вам нужно будет установить NGV со ступицей на дно консервной банки, и у вас возникнут дополнительные проблемы со сборкой двигателя для обслуживанием.

Отрежьте одно дно консервной банки. В другом дне (или лучше в крышке) вырежьте круглое отверстие 52 мм. Затем нарежьте его кромку на сектора, как показано на фотографиях.









Вставьте сборку NGV в отверстие. Оберните сектора стальной проволокой плотно.

Сделайте кольцо из медной трубки (наружный диаметр 6 мм, внутренний диаметр 3,7 мм). Или лучше Вы можете использовать трубки из нержавеющей стали. Топливное кольцо должно плотно прилегать к внутренним компонентам вашей консервной банки. Припаяйте его.
Просверлите топливные форсунки. Это всего лишь 16 штук отверстий по 0,5 мм, равномерно распределенных по кольцу. Направление отверстий должно быть перпендикулярно потоку воздуха. Т.е. нужно просверлить отверстия на внутренней стороне кольца.














Обратите внимание, что наличие так называемых «горячих точек» в выхлопе двигателя зависит практически исключительно от качества топливного кольца. Грязные или неровные отверстия, и в итоге вы получите двигатель, который просто разрушит себя при попытке запустить его. Наличие горячих точек зависит гораздо меньше от качества вкладыша, чем пытаются сказать другие. Но топливное кольцо очень важно.

Проверьте качество разбрызгивания топлива, поджигая его. Языки пламени должны быть равны друг другу.

После завершения установите топливную форсунку в корпус консервной банки.

Все, что вам нужно сделать на этом этапе, это собрать все части вместе. Если дела пойдут хорошо, проблем с этим не возникнет.














Замажьте крышку консервной банки термостойким герметиком, вы можете использовать силикатный клей с жаростойким наполнителем. Можно использовать графитовую пыль, стальной порошок и так далее.

После того, как двигатель собран, проверьте, свободно ли вращается его ротор. Если это так, сделайте предварительное испытание на огнестойкость. Используйте какой-нибудь достаточно мощный вентилятор, чтобы продуть воздухозаборник или просто вращайте вал с помощью dremel. Слегка включите топливо и зажгите поток в задней части двигателя. Отрегулируйте вращение, чтобы пропустить пламя в камеру сгорания.

ОБРАТИТЕ ВНИМАНИЕ : на этом этапе вы не пытаетесь запустить двигатель! Единственная цель испытания на огнестойкость состоит в том, чтобы нагреть его и посмотреть, хорошо ли он ведет себя или нет. На этом этапе вы можете использовать баллон из бутана, который обычно используется для ручных горелок. Если все нормально вы можете перейти к следующему шагу. Однако лучше герметизировать двигатель с помощью герметика для печи (или силикатного клея, наполненного небольшим количеством термостойкого порошка).

Вы можете запустить двигатель, либо вдувая воздух в него, либо вращая его вал каким-либо стартером.
Будьте готовы сжечь несколько дисков NGV (и, возможно, турбины) при попытке запуска. (Вот почему на шаге 4 было рекомендовано сделать несколько резервных.) Как только вы освоитесь с двигателем, вы сможете без проблем запустить его в любое время.

Обратите внимание, что в настоящее время двигатель может служить в основном в образовательных и развлекательных целях. Но это полностью функциональный турбореактивный двигатель, способный вращаться до любых желаемых оборотов (в том числе и до само разрушающихся). Не стесняйтесь улучшать и модифицировать дизайн для выполнения ваших целей. Прежде всего, вам понадобится более толстый вал, чтобы достичь более высоких оборотов и, следовательно, тяги. Второе, что нужно попробовать - это обернуть внешнюю поверхность двигателя металлической трубой - топливопроводом и использовать ее в качестве испарителя для жидкого топлива. Здесь пригодится конструкция двигателя с горячей наружной стенкой. Еще одна вещь, о которой стоит подумать, это система смазки. В простейшем случае это может иметь форму маленькой бутылки с небольшим количеством масла и двумя трубами - одна труба для снятия давления с компрессора и направления его в баллон, а другая труба для направления масла из баллона под давлением и направления его в задняя балка. Без смазки двигатель может работать только в течение от 1 до 5 минут в зависимости от температуры NGV (чем выше температура, тем меньше время работы). После этого Вам необходимо самостоятельно смазать подшипники. А с добавленной системой смазки двигатель может работать долго.

Вы знали, что если в согнутую дугой трубу положить сухого спирта, подуть воздухом из компрессора и подать газ из баллона, то она взбесится, будет орать громче взлетающего истребителя и краснеть от злости? Это образное, но весьма близкое к истине описание работы бесклапанного пульсирующего воздушно-реактивного двигателя — настоящего реактивного двигателя, построить который под силу каждому.

Принципиальная схема Бесклапанный ПуВРД не содержит ни одной подвижной детали. Клапаном ему служит фронт химических превращений, образующийся при сгорании топлива.

Сергей Апресов Дмитрий Горячкин

Бесклапанный ПуВРД — удивительная конструкция. В ней нет движущихся частей, компрессора, турбины, клапанов. Простейший ПуВРД может обойтись даже без системы зажигания. Этот двигатель способен работать практически на чем угодно: замените баллон с пропаном канистрой с бензином — и он продолжит пульсировать и создавать тягу. К сожалению, ПуВРД оказались несостоятельными в авиации, но в последнее время их всерьез рассматривают как источник тепла при производстве биотоплива. И в этом случае двигатель работает на графитовой пыли, то есть на твердом топливе.

Наконец, элементарный принцип работы пульсирующего двигателя делает его относительно безразличным к точности изготовления. Поэтому изготовление ПуВРД стало излюбленным занятием для людей, неравнодушных к техническим хобби, в том числе авиамоделистов и начинающих сварщиков.


Несмотря на всю простоту, ПуВРД — это все-таки реактивный двигатель. Собрать его в домашней мастерской весьма непросто, и в этом процессе немало нюансов и подводных камней. Поэтому мы решили сделать наш мастер-класс многосерийным: в этой статье мы поговорим о принципах работы ПуВРД и расскажем, как изготовить корпус двигателя. Материал в следующем номере будет посвящен системе зажигания и процедуре запуска. Наконец, в одном из последующих номеров мы обязательно установим наш мотор на самодвижущееся шасси, чтобы продемонстрировать, что он действительно способен создавать серьезную тягу.

От русской идеи до немецкой ракеты

Собирать пульсирующий реактивный двигатель особенно приятно, зная, что впервые принцип действия ПуВРД запатентовал российский изобретатель Николай Телешов еще в 1864 году. Авторство первого действующего двигателя также приписывается россиянину — Владимиру Караводину. Высшей точкой развития ПуВРД по праву считается знаменитая крылатая ракета «Фау-1», состоявшая на вооружении армии Германии во время Второй мировой войны.


Чтобы работать было приятно и безопасно, мы предварительно очищаем листовой металл от пыли и ржавчины с помощью шлифовальной машинки. Края листов и деталей, как правило, очень острые и изобилуют заусенцами, поэтому работать с металлом надо только в перчатках.

Конечно же, речь идет о клапанных пульсирующих двигателях, принцип действия которых понятен из рисунка. Клапан на входе в камеру сгорания беспрепятственно пропускает в нее воздух. В камеру подается топливо, образуется горючая смесь. Когда свеча зажигания поджигает смесь, избыточное давление в камере сгорания закрывает клапан. Расширяющиеся газы направляются в сопло, создавая реактивную тягу. Движение продуктов сгорания создает в камере технический вакуум, благодаря которому клапан открывается, и в камеру всасывается воздух.

В отличие от турбореактивного двигателя, в ПуВРД смесь горит не непрерывно, а в импульсном режиме. Именно этим объясняется характерный низкочастотный шум пульсирующих моторов, который делает их неприменимыми в гражданской авиации. С точки зрения экономичности ПуВРД также проигрывают ТРД: несмотря на впечатляющее отношение тяги к массе (ведь у ПуВРД минимум деталей), степень сжатия в них достигает от силы 1,2:1, поэтому топливо сгорает неэффективно.


Прежде чем отправляться в мастерскую, мы начертили на бумаге и вырезали шаблоны разверток деталей в натуральную величину. Осталось лишь обвести их перманентным маркером, чтобы получить разметку для вырезания.

Зато ПуВРД бесценны как хобби: ведь они могут обходиться вообще без клапанов. Принципиально конструкция такого двигателя представляет собой камеру сгорания с подсоединенными к ней входной и выходной трубами. Входная труба гораздо короче выходной. Клапаном в таком двигателе служит не что иное, как фронт химических превращений.

Горючая смесь в ПуВРД сгорает с дозвуковой скоростью. Такое горение называется дефлаграцией (в отличие от сверхзвукового — детонации). При воспламенении смеси горючие газы вырываются из обеих труб. Именно поэтому и входная, и выходная трубы направлены в одну сторону и сообща участвуют в создании реактивной тяги. Но за счет разницы длин в тот момент, когда давление во входной трубе падает, по выходной еще движутся выхлопные газы. Они создают разрежение в камере сгорания, и через входную трубу в нее затягивается воздух. Часть газов из выходной трубы также направляется в камеру сгорания под действием разрежения. Они сжимают новую порцию горючей смеси и поджигают ее.


При работе с электрическими ножницами главный враг — вибрации. Поэтому заготовку нужно надежно фиксировать с помощью струбцины. При необходимости можно очень аккуратно погасить вибрации рукой.

Бесклапанный пульсирующий двигатель неприхотлив и стабилен. Для поддержания работы ему не требуется система зажигания. За счет разрежения он всасывает атмосферный воздух, не требуя дополнительного наддува. Если строить мотор на жидком топливе (мы для простоты предпочли газ пропан), то входная труба исправно выполняет функции карбюратора, распыляя в камеру сгорания смесь бензина и воздуха. Единственный момент, когда необходима система зажигания и принудительный наддув, — это запуск.

Китайский дизайн, российская сборка

Существует несколько распространенных конструкций пульсирующих реактивных двигателей. Кроме классической «U-образной трубы», весьма сложной в изготовлении, часто встречается «китайский двигатель» с конической камерой сгорания, к которой под углом приваривается небольшая входная труба, и «русский двигатель», по конструкции напоминающий автомобильный глушитель.


Трубы фиксированного диаметра легко формуются вокруг трубы. В основном это делается руками за счет эффекта рычага, а края заготовки закругляются с помощью киянки. Края лучше формовать так, чтобы при состыковке они образовывали плоскость — так легче положить сварной шов.

Прежде чем экспериментировать с собственными конструкциями ПуВРД, настоятельно рекомендуется построить двигатель по готовым чертежам: ведь сечения и объемы камеры сгорания, входной и выходной труб всецело определяют частоту резонансных пульсаций. Если не соблюдать пропорции, двигатель может не запуститься. Разнообразные чертежи ПуВРД доступны в интернете. Мы выбрали модель под названием «Гигантский китайский двигатель», размеры которой приводим во врезке.

Любительские ПуВРД делаются из листового металла. Применять в строительстве готовые трубы допустимо, но не рекомендуется по нескольким причинам. Во‑первых, практически невозможно подобрать трубы точно требуемого диаметра. Тем более сложно найти необходимые конические секции.


Сгибание конических секций — это исключительно ручной труд. Залог успеха — обжимать узкий конец конуса вокруг трубы малого диаметра, давая на него больше нагрузки, чем на широкую часть.

Во-вторых, трубы, как правило, имеют толстые стенки и соответствующий вес. Для двигателя, который должен обладать хорошим соотношением тяги к массе, это неприемлемо. Наконец, во время работы двигатель раскаляется докрасна. Если применять в конструкции трубы и фитинги из разных металлов с разным коэффициентом расширения, мотор проживет недолго.

Итак, мы выбрали путь, который выбирает большинство любителей ПуВРД, — изготовить корпус из листового металла. И тут же встали перед дилеммой: обратиться к профессионалам со специальным оборудованием (станки для водно-абразивной резки с ЧПУ, вальцы для проката труб, специальная сварка) или, вооружившись простейшими инструментами и самым распространенным сварочным аппаратом, пройти нелегкий путь начинающего двигателестроителя от начала до конца. Мы предпочли второй вариант.

Снова в школу

Первое, что необходимо сделать, — начертить развертки будущих деталей. Для этого необходимо вспомнить школьную геометрию и совсем немного вузовского черчения. Сделать развертки цилиндрических труб проще простого — это прямоугольники, одна сторона которых равна длине трубы, а вторая — диаметру, умноженному на «пи». Рассчитать развертку усеченного конуса или усеченного цилиндра — чуть более сложная задача, для решения которой нам пришлось заглянуть в учебник черчения.


Сварка тонкого листового металла — тончайшая работа, особенно если вы используете ручную дуговую сварку, как мы. Возможно, для данной задачи лучше подойдет сварка неплавящимся вольфрамовым электродом в аргонной среде, но оборудование для нее редкое и требует специфических навыков.

Выбор металла — весьма деликатный вопрос. С точки зрения термостойкости для наших целей лучше всего подходит нержавейка, но для первого раза лучше использовать черную низкоуглеродистую сталь: ее проще формовать и варить. Минимальная толщина листа, способного выдержать температуру сгорания топлива, — 0,6 мм. Чем тоньше сталь, тем легче ее формовать и труднее варить. Мы выбрали лист толщиной 1 мм и, похоже, не прогадали.

Даже если ваш сварочный аппарат может работать в режиме плазменной резки, не используйте его для вырезания разверток: края обработанных таким образом деталей плохо свариваются. Ручные ножницы по металлу — тоже не лучший выбор, так как они загибают края заготовок. Идеальный инструмент — электрические ножницы, которые режут миллиметровый лист как по маслу.


Для сгибания листа в трубу есть специальный инструмент — вальцы, или листогиб. Он относится к профессиональному производственному оборудованию и поэтому вряд ли найдется у вас в гараже. Согнуть достойную трубу помогут тиски.

Процесс сварки миллиметрового металла полноразмерным сварочным аппаратом требует определенного опыта. Чуть передержав электрод на одном месте, легко прожечь в заготовке дыру. При сварке в шов могут попасть пузырьки воздуха, которые затем дадут течь. Поэтому имеет смысл шлифовать шов болгаркой до минимальной толщины, чтобы пузырьки не оставались внутри шва, а становились видимыми.


В следующих сериях

К сожалению, в рамках одной статьи невозможно описать все нюансы работы. Принято считать, что эти работы требуют профессиональной квалификации, однако при должном усердии все они доступны любителю. Нам, журналистам, самим было интересно освоить новые для себя рабочие специальности, и для этого мы читали учебники, советовались с профессионалами и совершали ошибки.

Корпус, который мы сварили, нам понравился. На него приятно смотреть, его приятно держать в руках. Так что искренне советуем и вам взяться за такое дело. В следующем номере журнала мы расскажем, как изготовить систему зажигания и запустить бесклапанный пульсирующий воздушно-реактивный двигатель.