Как сделать пушку гаусса. Легендарная гаусс-пушка своими руками

Информация предоставлена исключительно в образовательных целях!
Администратор сайта не несет ответственности за возможные последствия использования предоставленной информации.

ЗАРЯЖЕННЫЕ КОНДЕНСАТОРЫ СМЕРТЕЛЬНО ОПАСНЫ!

Электромагнитная пушка (Гаусс-ган, англ. coilgun ) в ее классическом варианте представляет собой устройство, использующее свойство ферромагнетиков втягиваться в область более сильного магнитного поля для ускорения феромагнитного "снаряда".

Мой гаусс-ган:
вид сверху:


вид сбоку:


1 - разъем для подключения дистанционного спуска
2 - переключатель "заряд аккумулятора/работа"
3 - разъем для подключения к звуковой карте компьютера
4 - переключатель "заряд конденсатора/выстрел"
5 - кнопка аварийного разряда конденсатора
6 - индикатор "Заряд аккумулятора"
7 - индикатор "Работа"
8 -индикатор "Заряд конденсатора"
9 - индикатор "Выстрел"

Схема силовой части пушки Гаусса:

1 - ствол
2 - защитный диод
3 - катушка
4 - ИК-светодиоды
5 - ИК-фототранзисторы

Основные элементы конструкции моей электромагнитной пушки :
аккумулятор -
я использую два литий-ионных аккумулятора SANYO UR18650A формата 18650 от ноутбука емкостью 2150 мАч, включенных последовательно:
...
Предельное напряжение разряда этих аккумуляторов составляет 3,0 В.

преобразователь напряжения для питания цепей управления -
Напряжение с батарей поступает на повышающий преобразователь напряжения на микросхеме 34063, который повышает напряжение до 14 В. Затем напряжение поступает на преобразователь для заряда конденсатора, а стабилизированное до 5 В микросхемой 7805 - для питания цепи управления.

преобразователь напряжения для заряда конденсатора -
повышающий преобразователь на базе таймера 7555 и MOSFET -транзистора ;
- это N -канальный MOSFET -транзистор в корпусе TO-247 с максимально допустимым напряжением "сток-исток" V DS = 500 вольт, максимальным импульсным током стока I D = 56 ампер и типичным значением сопротивления "сток-исток" в открытом состоянии R DS(on) = 0,33 ома.

Индуктивность дросселя преобразователя влияет на его работу:
слишком малая индуктивность определяет низкую скорость заряда конденсатора;
слишком высокая индуктивность может привести к насыщению сердечника.

В качестве генератора импульсов (oscillator circuit ) для преобразователя (boost converter ) можно использовать микроконтроллер (например, популярный Arduino ), который позволит реализовать широтно-импульсную модуляцию (ШИМ, PWM ) для управления скважностью импульсов.

конденсатор (coil cap(acitor)) -
электролитический конденсатор на напряжение несколько сотен вольт.
Ранее я использовал конденсатор К50-17 от советской внешней фотовспышки емкостью 800 мкФ на напряжение 300 В:

Недостатком этого конденсатора являются, по моему мнению, невысокое рабочее напряжение, повышенный ток утечки (приводит к более долгой зарядке) и возможно завышенная емкость.
Поэтому я перешел на использование импортных современных конденсаторов:

SAMWHA на напряжение 450 В емкостью 220 мкФ серии HC . HC - это стандартная серия конденсаторов SAMWHA , существуют и другие серии: HE - работающие в более широком температурном диапазоне, HJ - с увеличенным временем жизни;

PEC на напряжение 400 В емкостью 150 мкФ.
Также я испытывал третий конденсатор на напряжение 400 В емкостью 680 мкФ, приобретенный в интернет-магазине dx.com -

В итоге я остановился на использовании конденсатора PEC на напряжение 400 В емкостью 150 мкФ .

Для конденсатора также важно его эквивалентное последовательное сопротивление (ESR ).

переключатель -
силовой переключатель SA предназачен для коммутирования заряженного конденсатора C на катушку L :

в качестве переключателя можно использовать либо тиристоры, либо IGBT -транзисторы:

тиристор -
я использую силовой тиристор ТЧ125-9-364 с управлением по катоду
внешний вид

размеры

- тиристор быстродействующий штыревого исполнения: "125" означает максимально допустимый действующий ток (125 А); "9" означает класс тиристора, т.е. повторяющееся импульсное напряжение в сотнях вольт (900 В).

Использование тиристора в качестве ключа требует подбора емкости конденсаторной батареи, так как затянутый импульс тока приведет к втягиванию пролетевшего центр катушки снаряда обратно - "suck-back effect" .

IGBT-транзистор -
применение в качестве ключа IGBT -транзистора позволяет не только замыкать, но и размыкать цепь катушки. Это позволяет прерывать ток (и магнитное поле катушки) после пролета снаряда через центр катушки, иначе бы снаряд втягивался назад, в катушку, и, следовательно, замедлялся. Но размыкание цепи катушки (резкое убывание тока в катушке) приводит к возникновению импульса высокого напряжения на катушке в соответствии с законом электромагнитной индукции $u_L = {L {{di_L} \over {dt}} }$. Для защиты ключа-IGBT -транзистора необходимо использовать дополнительные элементы:

VD tvs - диод (TVS diode ), создающий путь току в катушке при размыкании ключа и гасящий резкий бросок напряжения на катушке
R dis - разрядный резистор (discharge resistor ) - обеспечивает затухание тока в катушке (поглощает энергию магнитного поля катушки)
C rs ringing suppression capacitor ), предотвращающий возникновение импульсов перенапряжения на ключе (может дополняться резистором, образуя RC-snubber )

Я использовал IGBT -транзистор IRG48BC40F из популярной серии IRG4 .

катушка (coil) -
катушка намотана на пластиковом каркасе медным проводом. Омическое сопротивление катушки составляет 6,7 Ом. Ширина многослойной намотки (внавал) $b$ равна 14 мм, в одном слое около 30 витков, максимальный радиус - около 12 мм, минимальный радиус $D$ - около 8 мм (средний радиус $a$ - около 10 мм, высота $c$ - около 4 мм), диаметр провода - около 0,25 мм.
Параллельно катушке включен диод UF5408 (supression diode ) (пиковый ток 150 А, пиковое обратное напряжение 1000 В), гасящий импульс напряжения самоиндукции при прерывании тока в катушке.

ствол (barrel) -
сделан из корпуса шариковой ручки.

снаряд (projectile) -
Параметры испытательного снаряда - отрезок гвоздя диаметром 4 мм (диаметр ствола ~ 6 мм) и длиной 2 см (объем снаряда составляет 0,256 см 3 , а масса $m$ = 2 грамма, если принять плотность стали 7,8 г/см 3). Массу я вычислял, представив снаряд как совокупность конуса и цилиндра.

Материал снаряда обязан быть ферромагнетиком .
Также материал снаряда должен иметь как можно более высокий порог магнитного насыщения - значение индукции насыщения $B_s$ . Одним из лучших вариантов является обычное магнитомягкое железо (например, обычная незакаленная сталь Ст. 3 - Ст. 10) с индукцией насыщения 1,6 - 1,7 Тл. Гвозди изготавливают из низкоуглеродистой термически необработанной стальной проволоки (сталь марок Ст. 1 КП, Ст. 2 КП, Ст. 3 ПС, Ст. 3 КП).
Обозначение стали:
Ст. - углеродистая сталь обыкновенного качества;
0 - 10 - процентное содержание углерода, увеличенное в 10 раз. С увеличением содержания углерода снижается индукция насыщения $B_s$.

А самым эффективным является сплав "пермендюр ", но он слишком экзотический и дорогой. Этот сплав состоит из 30-50 % кобальта, 1,5-2 % ванадия и остальное - железо. Пермендюр обладает наивысшей из всех известных ферромагнетиков индукцией насыщения $B_s$ до 2,43 Тл.

Также желательно, чтобы материал снаряда имел как можно более низкую проводимость . Это связано с тем, что возникающие в переменном магнитном поле в проводящем стержне вихревые токи, которые приводят к потерям энергии.

Поэтому в качестве альтернативы снарядам - обрезкам гвоздей я испытал ферритовый стержень (ferrite rod ), взятый из дросселя с материнской платы:

Аналогичные катушки встречаются и в компьютерных блоках питания:

Внешний вид катушки с ферритовым сердечником:

Материал стержня (вероятно, никель-цинковый (Ni-Zn ) (аналог отечественных марок феррита НН/ВН) ферритовый порошок) является диэлектриком , что исключает возникновение вихревых токов. Но недостатком феррита является низкая индукция насыщения $B_s$ ~ 0,3 Тл.
Длина стержня составила 2 см:

Плотность никель-цинковых ферритов составляет $\rho$ = 4,0 ... 4,9 г/см 3 .

Сила притяжения снаряда
Вычисление силы, действующей на снаряд в пушке Гаусса, является сложной задачей.

Можно привести несколько примеров вычисления электромагнитных сил.

Сила притяжения кусочка ферромагнетика к катушке-соленоиду с ферромагнитным сердечником (например, якоря реле к катушке) определяется выражением $F = {{{{(w I)}^2} \mu_0 S} \over {2 {{\delta}^2}}}$ , где $w$ - количество витков в катушке, $I$ - ток в обмотке катушки, $S$ - площадь сечения сердечника катушки, $\delta$ - расстояние от сердечника катушки до притягиваемого кусочка. При этом пренебрегаем магнитным сопротивлением ферромагнетиков в магнитной цепи.

Сила, втягивающая ферромагнетик в магнитное поле катушки без сердечника, определяется выражением $F = {{w I} \over 2} {{d\Phi} \over {dx}}$.
В этой формуле ${{d\Phi} \over {dx}}$ - скорость изменения магнитного потока катушки $\Phi$ при перемещении кусочка ферромагнетика вдоль оси катушки (изменении координаты $x$), эту величину вычислить достаточно сложно. Вышеуказанная формула может быть переписана в виде $F = {{{I}^2} \over 2} {{dL} \over {dx}}$, где ${{dL} \over {dx}}$ - скорость изменения индуктивности катушки $L$.

Порядок выполнения выстрела из гаусс-гана
Перед выстрелом конденсатор необходимо зарядить до напряжения 400 В. Для этого необходимо включить выключатель (2) и перевести переключатель (4) в положение "ЗАРЯД". Для индикации напряжения к конденсатору через делитель напряжения подключен индикатор уровня от советского магнитофона. Для аварийного разряда конденсатора без подключения катушки служит резистор сопротивлением 6,8 кОм мощностью 2 Вт, подключаемый с помощью выключателя (5) к конденсатору. Перед выстрелом необходимо перевести переключатель (4) в положение "ВЫСТРЕЛ". Для избежания влияния дребезга контактов на формирование импульса управления кнопка "Выстрел" подключается к схеме защиты от дребезга на переключающем реле и микросхеме 74HC00N . С выхода этой схемы сигнал запускает одновибратор, который вырабатывает одиночный импульс настраиваемой длительности. Этот импульс поступает через оптопару PC817 на первичную обмотку имульсного трансформатора, обеспечивающего гальваническую развязку цепи управления от силовой цепи. Импульс, формируемый на вторичной обмотке, открывает тиристор и конденсатор разряжается через него на катушку.

Ток, протекающий через катушку при разряде, создает магнитное поле, втягивающее ферромагнитный снаряд и придающее снаряду некоторую начальную скорость. После вылета из ствола снаряд дальше летит по инерции. При этом следует учитывать то, что после пролета снаряда через центр катушки магнитное поле будет замедлять снаряд, поэтому импульс тока в катушке не должен быть затянут, иначе это приведет к уменьшению начальной скорости снаряда.

Для дистанционного управления выстрелом к разъему (1) подключается кнопка:

Определение скорости вылета снаряда из ствола
При выстреле дульная скорость и энергия сильно зависят от начального положения снаряда в стволе.
Для настройки оптимального положения необходимо измерять скорость вылета снаряда из ствола. Для этого я использовал оптический измеритель скорости - два оптических датчика (ИК-светодиоды VD1 , VD2 + ИК-фототранзисторы VT1 , VT2 ) размещены в стволе на расстоянии $l$ = 1 см друг от друга. При пролете снаряд закрывает фототранзисторы от излучения светодиодов, а компараторы на микросхеме LM358N формируют цифровой сигнал:


При перекрытии светового потока датчика 2 (ближайшего к катушке) загорается красный ("RED ") светодиод, а при перекрытии датчика 1 - зеленый ("GREEN ").

Этот сигнал преобразуется к уровню в десятые доли вольта (делители из резисторов R1 ,R3 и R2 ,R4 ) и подается на два канала линейного (не микрофонного!) входа звуковой карты компьютера с помощью кабеля с двумя штекерами - штекером, подключаемого к разъему гаусс-гана, и штекером, втыкаемым в гнездо звуковой карты компьютера:
делитель напряжения:


LEFT - левый канал; RIGHT - правый канал; GND - "земля"

штекер, подключаемый к пушке:

5 - левый канал; 1 - правый канал; 3 - "земля"
штекер, подключаемый к компьютеру:

1 - левый канал; 2 - правый канал; 3 - "земля"

Для обработки сигнала удобно использовать бесплатную программу Audacity ().
Так как на каждом канале входа звуковой карты включен последовательно с остальной цепью конденсатор, то фактически вход звуковой карты представляет собой RC -цепочку, и записанный компьютером сигнал имеет сглаженный вид:


Характерные точки на графиках:
1 - пролет передней части снаряда мимо датчика 1
2 - пролет передней части снаряда мимо датчика 2
3 - пролет задней части снаряда мимо датчика 1
4 - пролет задней части снаряда мимо датчика 2
Я определяю начальную скорость снаряда по разнице времени между точками 3 и 4 с учетом того, что расстояние между датчиками составляет 1 см.
В приведенном примере при частоте оцифровки $f$ = 192000 Гц для количества сэмплов $N$ = 160 скорость снаряда $v = {{l f} \over {N}} = {{1920} \over 160}$ составила 12 м/с.

Скорость вылета снаряда из ствола зависит от его начального положения в стволе, задаваемого смещением задней части снаряда от края ствола $\Delta$:

Для каждой емкости батареи $C$ оптимальное положение снаряда (значение $\Delta$) различно.

Для вышеописанного снаряда и емкости батареи 370 мкФ я получил следующие результаты:

При емкости батареи 150 мкФ результаты были следующими:

Максимальная скорость снаряда составила $v$ = 21,1 м/с (при $\Delta$ = 10 мм), что соответствует энергии ~0,5 Дж -

При испытании снаряда - ферритового стержня выяснилось, что он требует намного более глубокого расположения в стволе (намного большей величины $\Delta$).

Законы об оружии
В Республике Беларусь изделия с дульной энергией (muzzle energy ) не более 3 Дж приобретаются без соответствующего разрешения и не регистрируются.
В Российской Федерации изделия с дульной энергией менее 3 Дж не считаются оружием.
В Великобритании оружием не считаются изделия с дульной энергии не более 1,3 Дж.

Определение разрядного тока конденсатора
Для определения максимального разрядного тока конденсатора можно использовать график напряжения на конденсаторе при разряде. Для этого можно подключиться к разъему, на который через делитель подается напряжение на конденсаторе, уменьшенное в $n$ = 100 раз. Ток разряда конденсатора $i = {n} \cdot {C \cdot {{du} \over {dt}}} = {{{m_u} \over {m_t}} C tg \alpha}$, где $\alpha$ - угол наклона касательной к кривой напряжения конденсатора в данной точке.
Вот пример такой разрядной кривой напряжения на конденсаторе:

В этом примере $C$ = 800 мкФ, $m_u$ = 1 В/дел., $m_t$ = 6,4 мс/дел., $\alpha$ = -69,4°, $tg \alpha = -2,66 $, что соответствует току в начале разряда $i = {100} \cdot {800} \cdot {10^{-6}} \cdot {1 \over {6,4 \cdot {10^{-3}}}} \cdot (-2,66) = -33,3$ ампера.

Продолжение следует

Схема простого одноступенчатого настольного электромагнитного ускорителя масс или просто – Гаусс пушка. Названа по имени немецкого учёного Карла Гаусса. В моем случае ускоритель состоит из зарядки, токоограничивающая нагрузка, двух электролитических конденсаторов, вольтметра и соленоида.

Итак, разберем все по порядку. Зарядка пушки работает от сети 220 вольт. Зарядка состоит из конденсатора 1,5 мкФ 400 В. Диоды 1N4006. Напряжение на выходе 350 В.


Далее идет токоограничивающая нагрузка - Н1, в моем случае лампа накаливания, но можно использовать мощный резистор 500 – 1000 Ом. Ключ S1 ограничивает зарядку кондесаторов. Ключ S2 подает разряд мощный разряд тока на соленойд, поэтому S2 должен выдерживать большой ток, в своем случае я использовал кнопку от электрического щитка.


Конденсаторы С1 и С2, каждый 470 мкФ 400 В. В сумме получается 940 мкФ 400 В. Подключать конденсаторы нужно соблюдая полярность и напряжение на них во время зарядки. Контролировать напряжение на них можно вольтметром.


И теперь самое сложное в нашей конструкции гаусс пушки – соленоид. Наматывается он на диэлектическом стержне. Внутренний диаметр ствола 5-6 мм. Провод использовал ПЭЛ 0.5. Толщина катушки 1.5 см. Длина 2 см. Мотая соленоид, нужно каждый слой изолировать супер клеем.


Ускорять нашей электромагнитной гаусс пушкой мы будем обрезки гвоздей или самодельные пули толщиной 4-5 мм, длинной с катушку. Более легкие пули летают на большее расстояние. Более тяжелые летают на расстояние меньше, но энергия у них больше. Мой гаусс ган пробивает пивные банки и стреляет на 10-12 метров в зависимости от пули.

И ещё, для ускорителя лучше подбирать провода потолще, чтобы было меньше сопротивления в цепи. Будьте крайне осторожны! Во время изобретения ускорителя меня несколько раз било током, соблюдайте правила электробезопастности и уделяйте внимание надёжности изоляции. Удачи в творчестве.

Обсудить статью ГАУСС ПУШКА


Привет, друзья! Наверняка кто-то из вас уже когда-то читал или лично сталкивался с электромагнитным ускорителем Гаусса, который более известен под «Пушкой Гаусса».

Традиционная Гаусс-пушка строится с применением труднодоступных или довольно дорогих конденсаторов большой емкости, также для осуществления правильной зарядки и выстрела требуется некоторая обвязка (диоды, тиристоры и так далее). Это может быть довольно сложно для людей, которые ничего не понимают в радиоэлектронике, но желание поэкспериментировать не дает сидеть на месте. В этой статье я попытаюсь подробно рассказать о принципе работы пушки и о том, как можно собрать упрощенный до минимума ускоритель Гаусса.

Главной частью пушки является катушка. Как правило ее мотают самостоятельно на каком-либо диэлектрическом немагнитном стержне, который в диаметре несильно превышает диаметр снаряда. В предложенной конструкции катушку можно намотать даже «на глазок», потому что принцип действия просто не позволяет произвести никаких расчетов. Достаточно добыть медный или алюминиевый провод диаметром 0.2-1 мм в лаковой или силиконовой изоляции и намотать на стволе 150-250 витков так, чтобы длина намотки одного ряда была примерно 2-3 см. Можно использовать и готовый соленоид.



При прохождении электрического тока через катушку в ней возникает магнитное поле. Проще говоря, катушка превращается в электромагнит, который втягивает железный снаряд, а чтобы он не оставался в катушке, во время его вхождения в соленоид нужно просто отключить подачу тока.

В классических пушках это достигается за счет точных расчетов, применения тиристоров и других компонентов, которые «обрежут» импульс в нужный момент. Мы же просто будем разрывать цепь «когда получится». Для экстренного разрывания электрической цепи в быту используют плавкие предохранители, их можно использовать в нашем проекте, однако более целесообразно заменить их лампочками от елочной гирлянды. Они рассчитаны на питание низким напряжением, поэтому при питании от сети 220В мгновенно перегорают и разрывают цепь.



Готовое устройство состоит всего из трех деталей: катушки, сетевого кабеля и лампочки, подключенной последовательно катушке.


Многие согласятся, что использование пушки в таком виде крайне неудобно и неэстетично, а порой даже очень опасно. Поэтому я смонтировал устройство на небольшом кусочке фанеры. Для катушки установил отдельные клеммы. Это дает возможность быстро менять соленоид и экспериментировать с разными вариантами. Для лампочки я установил два тонких обрезанных гвоздя. Концы проводов лампочки просто обкручиваются вокруг них, поэтому лампочка меняется очень быстро. Обратите внимание, что сама колба находится в специально проделанном отверстии.


Дело в том, что при выстреле происходит большая вспышка и искры, поэтому я посчитал нужным немного отвести вниз эту «струю».


Скорость вылета снаряда здесь довольно большая, но даже бумагу он пробивает с трудом, иногда железные пули вбиваются в пенопласт.

Привет. Сегодня мы соорудим пушку Гаусса в домашних условиях из частей, которые легко можно найти в местных магазинах. Используя конденсаторы, выключатель и кое-какие другие части, мы создадим пусковую установку, способную при помощи электромагнетизма запускать небольшие гвозди на расстояние примерно до 3 метров. Приступим!

Шаг 1: Смотрим видео

Сначала посмотрите видео. Вы изучите проект и увидите пушку в действии. Читайте дальше для изучения более детальной инструкции сборки устройства Гаусс Ган.

Шаг 2: Собираем необходимые материалы

Для проекта вам понадобится:

  1. 8 больших конденсаторов. Я использовал 3,300uF 40V. Ключевым моментом здесь является то, что чем меньше вольтаж — тем меньше опасности, поэтому поищите варианты в районе 30 — 50 Вольт. Что касается ёмкости, то чем больше — тем лучше.
  2. Один выключатель для токов высокой силы
  3. Одна катушка на 20 витков (я скрутил свою из провода стандарта 18awg)
  4. Медный лист и/или толстый медный повод

Шаг 3: Склеиваем конденсаторы

Возьмите конденсаторы и склейте их вместе таким образом, чтобы положительные клеммы находились ближе к центру склеивания. Склейте их сначала в 4 группы по 2 штуки. Затем склейте по две группы вместе, получив в итоге 2 группы из 4 конденсаторов. Затем положите одну группу на другую.

Шаг 4: Собираем группу конденсаторов

Фотография показывает, как должна выглядеть итоговая конструкция.

Теперь возьмите позитивные клеммы и соедините их друг с другом, а затем припаяйте к медной накладке. Накладкой может послужить толстый медный провод или лист.

Шаг 5: Спаиваем медные накладки

Используйте при необходимости направленное тепло (небольшой промышленный фен), разогрейте медные накладки и припаяйте к ним клеммы конденсаторов.

На фото видна моя группа конденсаторов после выполнения этого шага.

Шаг 6: Спаяйте отрицательные клеммы конденсаторов

Возьмите еще один толстый проводник, я использовал изолированный медный повод с большим сечением, сняв с него в нужных местах изоляцию.

Согните провод так, чтобы он максимально эффективно покрывал всю дистанцию нашей группы конденсаторов.

Спаяйте его в нужных местах.

Шаг 7: Подготовьте снаряд

Далее нужно подготовить для катушки подходящий снаряд. Я намотал свою катушку вокруг бобины. В качестве дула я использовал небольшую соломину. Следовательно, мой снаряд должен входить в соломинку. Я взял гвоздь и обрезал его до длины примерно в 3 см, оставив острую его часть.

Шаг 8: Найдите подходящий выключатель

Затем мне нужно было найти способ сбросить заряд из конденсаторов на катушку. Большинство людей для таких нужд используют выпрямители (SCR). Я решил действовать проще и нашел выключатель, работающий при высокой силе тока.

На выключателе есть три отметки силы тока: 14.2A, 15A, и 500A. Мои расчеты показали максимальную силу примерно в 40A на пике, продолжающемся около миллисекунды, так что всё должно было сработать.

ЗАМЕТКА. Не используйте мой метод включения, если ёмкость ваших конденсаторов будет больше. Я испытывал удачу и всё обошлось, но вам не захочется, чтобы выключатель взорвался из-за того, что вы пропустили 300A через выключатель, рассчитанный на 1A.

Шаг 9: Наматываем катушку

Мы почти закончили собирать электромагнитную пушку. Время намотать катушку.

Я испробовал три разных катушки и обнаружил, что примерно 20 витков изолированного провода стандарта 16 или 18 awg действуют лучше всего. Я использовал старую бобину, намотал на неё проволоку и продел внутрь пластиковую соломину, запаяв один конец соломины горячим клеем.

Шаг 10: Собираем устройство по схеме


Теперь, когда вы подготовили все части, соедините их вместе. Если у вас возникли какие-то проблемы — следуйте схеме.

Шаг 11: Пожаробезопасность


Мои поздравления! Мы сделали пушку Грасса своими руками. Используйте зарядник, чтобы зарядить ваши конденсаторы до почти максимального напряжения. Я зарядил свою установку на 40V до 38V.

Зарядите снаряд в трубку и нажмите кнопку. Ток пойдёт на катушку и она выстрелит гвоздём.

БУДЬТЕ ОСТОРОЖНЫ! Даже учитывая, что это низкоточный проект, и что он вас не убьёт, но всё же такой ток может навредить вашему здоровью. На второй фотографии видно, что станет, если вы случайно соедините плюс и минус.

15,245 Просмотры

Довольна мощная модель знаменитой Гаусс пушки, которую можно сделать своими руками из подручных средств. Данная самодельная Гаусс пушки изготавливается очень просто, имеет лёгкую конструкцию, всё используемые детали найдутся у каждого любителя самоделок и радиолюбителя. С помощью программы расчёта катушки, можно получить максимальную мощность.

Итак, для изготовления Пушка Гаусса нам потребуется:

  1. Кусок фанеры.
  2. Листовой пластик.
  3. Пластиковая трубка для дула ∅5 мм.
  4. Медный провод для катушки ∅0,8 мм.
  5. Электролитические конденсаторы большой ёмкости
  6. Пусковая кнопка
  7. Тиристор 70TPS12
  8. Батарейки 4X1.5V
  9. Лампа накала и патрон для неё 40W
  10. Диод 1N4007

Сборка корпуса для схемы Гаусс пушки

Форма корпуса может быть любой, не обязательно придерживаться представленной схеме. Что бы придать корпусу эстетический вид, можно его покрасить краской из баллончика.

Установка деталей в корпус для Пушки Гаусса

Для начала крепим конденсаторы, в данном случае они были закреплены на пластиковые стяжки, но можно придумать и другое крепление.

Затем устанавливаем патрон для лампы накала на внешней стороне корпуса. Не забываем подсоединить к нему два провода для питания.

Затем внутри корпуса размещаем батарейный отсек и фиксируем его, к примеру саморезами по дереву или другим способом.

Намотка катушки для Пушки Гаусса

Для расчета катушки Гаусса можно использовать программу FEMM, скачать программу FEMM можно по этой ссылке https://code.google.com/archive/p/femm-coilgun

Пользоваться программой очень легко, в шаблоне нужно ввести необходимые параметры, загрузить их в программу и на выходе получаем все характеристики катушки и будущей пушки в целом, вплоть до скорости снаряда.

Итак приступим к намотке! Для начала нужно взять приготовленную трубку и намотать на неё бумагу, используя клей ПВА так, что бы внешний диаметр трубки был равен 6 мм.

Затем просверливаем отверстия по центру отрезков и насаживаем из на трубку. С помощью горячего клея фиксируем их. Расстояние между стенками должно быть 25 мм.

Насаживаем катушку на ствол и приступаем к следующему этапу…

Схема Гаусс Пушки. Сборка

Собираем схему внутри корпуса навесным монтажом.

Затем устанавливаем кнопку на корпус, сверлим два отверстия и продеваем туда провода для катушки.

Для упрощения использования, можно сделать для пушки подставку. В данном случае она была изготовлена из деревянного бруска. В данном варианте лафета были оставлены зазоры по краям ствола, это нужно для того что бы регулировать катушку, перемещая катушку, можно добиться наибольшей мощности.

Снаряды для пушки изготавливаются из металлического гвоздя. Отрезки делаются длиной 24 мм и диаметром 4 мм. Заготовки снарядов нужно заточить.