Турбина т 50 130 описание. Устройство и техническая характеристика оборудования ооо 'лукойл–волгоградэнерго' волжская тэц

Теплофикационная паровая турбина Т-50/60-130 предназначена для привода электрического генератора и имеет два теплофикационных отбора для отпуска тепла на отопление. Как и другие турбины мощностью 30-60 МВт, она предназначена для установки на ТЭЦ средних и небольших городов. Давление как в отопительных, так и в производственном отборе поддерживается регулирующими поворотными диафрагмами, установленными в ЦНД.

Турбина рассчитана для работы при следующих номинальных параметрах:

· давление перегретого пара – 3.41 МПа;

· температура перегретого пара - 396° С;

· номинальная мощность турбины - 50 МВт.

Последовательность технологического процесса рабочего тела заключается в следующем: пар, сгенерированный в котле, по паропроводам направляется в цилиндр высокого давления турбины, отработав на всех ступенях ЦВД поступает в ЦНД после чего поступает в конденсатор. В конденсаторе отработавший пар конденсируется за счет тепла отданного охлаждающей воде, которая имеет свой циркуляционный контур (цирк. вода), далее, при помощи конденсатных насосов, основной конденсат направляется в систему регенерации. В эту систему входят 4 ПНД, 3 ПВД и деаэратор. Система регенерации предназначена для подогрева питательной воды на входе в котел до определенной температуры. Эта температура имеет фиксированное значение и указывается в паспорте турбины.

Принципиальная тепловая схема является одной из основных схем электростанции. Такая схема дает представление о типе электростанции и принципе ее работы, раскрывая суть технологического процесса выработки энергии, а также характеризует техническую оснащенность и тепловую экономичность станции. Она необходима для расчета теплового и энергетического балансов установки.

На данной схеме показаны 7 отборов, два из которых являются также и теплофикационными, т.е. предназначены для подогрева сетевой воды. Дренажи с подогревателей сбрасываются либо в предыдущий подогреватель, либо с помощью дренажных насосов в точку смешения. После того как основной конденсат прошел 4 ПНД, он попадает в деаэратор. Основное значение которого заключается не в том чтобы подогреть воду, а в том чтобы очистить ее от кислорода, который вызывает коррозию металлов трубопроводов, экранных труб, труб пароперегревателей и другого оборудования.

Основные элементы и условные обозначения:

К- (конденсатор)

КУ- котельная установка

ЦВД- цилиндр высокого давления

ЦНД- цилиндр низкого давления

ЭГ – электрический генератор

ОЭ – охладитель эжектора

ПС – подогреватель сетевой

ПВК – пиковый водогрейный котел

ТП - тепловой потребитель

КН – конденсатный насос

ДН – дренажный насос

ПН – питательный насос

ПНД – подогреватель высокого давления

ПВД – подогреватель низкого давления

Д - деаэратор

Схема.1 Тепловая схема турбины Т50/60-130


Таблица 1.1. Номинальные значения основных параметров турбины

Таблица 1.2. Параметры пара в камере отбора

Подогреватель Параметры пара в камере отбора Количество отбираемого пара, кгс/с
Давление, МПа Температура, °С
ПВД7 3,41 3,02
ПВД6 2,177 4,11
ПВД5 1,28 1,69
Деаэратор 1,28 1,16
ПНД4 0,529 2,3
ПНДЗ 0,272 2,97
ПНД2 0,0981 - 0,97
ПНД1 0,04 - 0,055

Российская ФедерацияРД

Нормативные характеристики конденсаторов турбин Т-50-130 ТМЗ, ПТ-60-130/13 и ПТ-80/100-130/13 ЛМЗ

При составлении "Нормативных характеристик" приняты следующие основные обозначения:

Расход пара в конденсатор (паровая нагрузка конденсатора), т/ч;

Нормативное давление пара в конденсаторе, кгс/см*;

Фактическое давление пара в конденсаторе, кгс/см;

Температура охлаждающей воды на входе в конденсатор, °С;

Температура охлаждающей воды на выходе из конденсатора, °С;

Температура насыщения, соответствующая давлению пара в конденсаторе, °С;

Гидравлическое сопротивление конденсатора (падение давления охлаждающей воды в конденсаторе), мм вод.ст.;

Нормативный температурный напор конденсатора, °С;

Фактический температурный напор конденсатора, °С;

Нагрев охлаждающей воды в конденсаторе, °С;

Номинальный расчетный расход oxлаждающей воды в конденсатор, м/ч;

Расход охлаждающей воды в конденсатор, м/ч;

Полная поверхность охлаждения конденсатора, м;

Поверхность охлаждения конденсатора при отключенном по воде встроенном пучке конденсатора, м.

Нормативные характеристики включают следующие основные зависимости:

1) температурного напора конденсатора (°С) от расхода пара в конденсатор (паровой нагрузки конденсатора) и начальной температуры охлаждающей воды при номинальном расходе охлаждающей воды:

2) давления пара в конденсаторе (кгс/см) от расхода пара в конденсатор и начальной температуры охлаждающей воды при номинальном расходе охлаждающей воды:

3) температурного напора конденсатора (°С) от расхода пара в конденсатор и начальной температуры охлаждающей воды при расходе охлаждающей воды 0,6-0,7 номинального:

4) давления пара в конденсаторе (кгс/см) от расхода пара в конденсатор и начальной температуры охлаждающей воды при расходе охлаждающей воды 0,6-0,7 - номинального:

5) температурного напора конденсатора (°С) от расхода пара в конденсатор и начальной температуры охлаждающей воды при расходе охлаждающей воды 0,44-0,5 номинального;

6) давления пара в конденсаторе (кгс/см) от расхода пара в конденсатор и начальной температуры охлаждающей воды при расходе охлаждающей воды 0,44-0,5 номинального:

7) гидравлического сопротивления конденсатора (падение давления охлаждающей воды в конденсаторе) от расхода охлаждающей воды при эксплуатационно чистой поверхности охлаждения конденсатора;

8) поправки к мощности турбины на отклонение давления отработавшего пара.

Турбины T-50-130 ТМЗ и ПТ-80/100-130/13 ЛМЗ оборудованы конденсаторами, у которых около 15% охлаждающей поверхности может использоваться для подогрева подпиточной или обратной сетевой воды (встроенные пучки). Предусмотрена возможность охлаждения встроенных пучков циркуляционной водой. Поэтому в "Нормативных характеристиках" для турбин типа Т-50-130 ТМЗ и ПТ-80/100-130/13 ЛМЗ приведены также зависимости по пп.1-6 для конденсаторов с отключенными встроенными пучками (с сокращенной примерно на 15% поверхностью охлаждения конденсаторов) при расходах охлаждающей воды 0,6-0,7 и 0,44-0,5.

Для турбины ПТ-80/100-130/13 ЛМЗ приведены также характеристики конденсатора с отключенным встроенным пучком при расходе охлаждающей воды 0,78 номинального.

3. ЭКСПЛУАТАЦИОННЫЙ КОНТРОЛЬ ЗА РАБОТОЙ КОНДЕНСАЦИОННОЙ УСТАНОВКИ И СОСТОЯНИЕМ КОНДЕНСАТОРА

Основными критериями оценки работы конденсационной установки, характеризующими состояние оборудования, при заданной паровой нагрузке конденсатора, являются давление пара в конденсаторе и отвечающий этим условиям температурный напор конденсатора.

Эксплуатационный контроль за работой конденсационной установки и состоянием конденсатора осуществляется сопоставлением измеренного в условиях эксплуатации фактического давления пара в конденсаторе с определенным для тех же условий (той же паровой нагрузки конденсатора, расхода и температуры охлаждающей воды) нормативным давлением пара в конденсаторе, а также сравнением фактического температурного напора конденсатора с нормативным.

Сравнительный анализ данных измерений и нормативных показателей работы установки позволяет обнаружить изменения в работе конденсационной установки и установить вероятные причины их.

Особенностью турбин с регулируемым отбором пара является длительная их работа, с малыми расходами пара в конденсатор. При режиме с теплофикационными отборами контроль зa температурным напором в конденсаторе не дает надежного ответа о степени загрязнения конденсатора. Поэтому контроль за работой конденсационной установки целесообразно проводить при расходах пара в конденсатор не менее 50% и при отключенной рециркуляции конденсата; это повысит точность определения давления пара и температурного напора конденсатора.

Кроме этих основных величин, для эксплуатационного контроля и для анализа работы конденсационной установки необходимо достаточно надежно определять также и ряд других параметров, от которых зависит давление отработавшего пара и температурный напор, а именно: температуру входящей и выходящей воды, паровую нагрузку конденсатора, расход охлаждающей воды и др.

Влияние присосов воздуха в воздухоудаляющих устройствах, работающих в пределах рабочей характеристики, на и незначительно, тогда как ухудшение воздушной плотности и увеличение присосов воздуха, превышающих рабочую производительность эжекторов, оказывают существенное влияние на работу конденсационной установки.

Поэтому контроль за воздушной плотностью вакуумной системы турбоустановок и поддержанием присосов воздуха на уровне норм ПТЭ является одной из основных задач при эксплуатации конденсационных установок.

Предлагаемые Нормативные характеристики построены для значений присосов воздуха, не превышающих норм ПТЭ.

Ниже приводятся основные параметры, которые необходимо измерять при эксплуатационном контроле за состоянием конденсатора, и некоторые рекомендации для организации измерений и методы определения основных контролируемых величин.

3.1. Давление отработавшего пара

Для получения представительных данных о давлении отработавшего пара в конденсаторе в условиях эксплуатации измерение должно производиться в точках, указанных в Нормативных характеристиках для каждого типа конденсатора.

Давление отработавшего пара должно измеряться жидкостными ртутными приборами с точностью не менее 1 мм рт.ст. (одностекольными чашечными вакуумметрами, баровакуумметрическими трубками).

При определении давления в конденсаторе к показаниям приборов необходимо вводить соответствующие поправки: на температуру столба ртути, на шкалу, на капиллярность (для одностекольных приборов).

Давление в конденсаторе (кгс/см) при измерении вакуума определяется по формуле

Где - барометрическое давление (с поправками), мм рт.ст.;

Разрежение, определенное по вакуумметру (с поправками), мм рт.ст.

Давление в конденсаторе (кгс/см) при измерении баровакуумметрической трубкой определяется как

Где - давление в конденсаторе, определенное по прибору, мм рт.ст.

Барометрическое давление необходимо измерять ртутным инспекторским барометром с введением всех необходимых по паспорту прибора поправок. Допускается также использовать данные ближайшей метеостанции с учетом разности высот расположения объектов.

При измерении давления отработавшего пара прокладку импульсных линий и установку приборов необходимо производить с соблюдением следующих правил монтажа приборов под вакуумом:

  • внутренний диаметр импульсных трубок должен быть не менее 10-12 мм;
  • импульсные линии должны иметь общий уклон в сторону конденсатора не менее 1:10;
  • герметичность импульсных линий должна быть проверена опрессовкой водой;
  • запрещается применять запорные устройства, имеющие сальники и резьбовые соединения;
  • измерительные устройства к импульсным линиям должны присоединяться с помощью толстостенной вакуумной резины.

3.2. Температурный напор

Температурный напор (°С) определяется как разность между температурой насыщения отработавшего пара и температурой охлаждающей воды на выходе из конденсатора

При этом температура насыщения определяется по измеренному давлению отработавшего пара в конденсаторе.

Контроль за работой конденсационных установок теплофикационных турбин должен производиться при конденсационном режиме турбины с выключенным регулятором давления в производственном и теплофикационном отборах.

Паровая нагрузка (расход пара в конденсатор) определяется по давлению в камере одного из отборов, значение которого является контрольным.

Расход пара (т/ч) в конденсатор при конденсационном режиме равен:

Где - расходный коэффициент, числовое значение которого приведено в технических данных конденсатора для каждого типа турбин;

Давление пара в контрольной ступени (камере отбора), кгс/см.

При необходимости эксплуатационного контроля за работой конденсатора при теплофикационном режиме турбины расход пара определяется приближенно расчетным путем по расходам пара в одну из промежуточных ступеней турбины и расходам пара в теплофикационный отбор и на регенеративные подогреватели низкого давления.

Для турбины T-50-130 ТМЗ расход пара (т/ч) в конденсатор при теплофикационном режиме составляет:

  • при одноступенчатом подогреве сетевой воды
  • при двухступенчатом подогреве сетевой воды

Где и - расходы пара соответственно через 23-ю (при одноступенчатом) и 21-ю (при двухступенчатом подогреве сетевой воды) ступени, т/ч;

Расход сетевой воды, м/ч;

; - нагрев сетевой воды соответственно в горизонтальном и вертикальном сетевых подогревателях, °С; определяется как разность температур сетевой воды после и до соответствующего подогревателя.

Расход пара через 23-ю ступень определяется по рис.I-15, б, в зависимости от расхода свежего пара на турбину и давления пара в нижнем теплофикационном отборе .

Расход пара через 21-ю ступень определяется по рис.I-15, а, в зависимости от расхода свежего пара на турбину и давлению пара в верхнем теплофикационном отборе .

Для турбин типа ПТ расход пара (т/ч) в конденсатор при теплофикационном режиме составляет:

  • для турбин ПТ-60-130/13 ЛМЗ
  • для турбин ПТ-80/100-130/13 ЛМЗ

Где - расход пара на выходе из ЧСД, т/ч. Определяется по рис.II-9 в зависимости от давления пара в теплофикационном отборе и в V отборе (для турбин ПТ-60-130/13) и по рис.III-17 в зависимости от давления пара в теплофикационном отборе и в IV отборе (для турбин ПТ-80/100-130/13);

Нагрев воды в сетевых подогревателях, °С. Определяется по разности температур сетевой воды после и до подогревателей.

Давление, принятое за контрольное, необходимо измерять пружинными приборами класса точности 0,6, периодически и тщательно проверенными. Для определения истинного значения давления в контрольных ступенях к показаниям прибора необходимо ввести соответствующие поправки (на высоту установки приборов, поправку по паспорту и т.д.).

Расходы свежего пара на турбину и сетевой воды, необходимые для определения расхода пара в конденсатор, измеряются штатными расходомерами с введением поправок на отклонение рабочих параметров среды от расчетных.

Температура сетевой воды измеряется ртутными лабораторными термометрами с ценой деления 0,1 °С.

3.4. Температура охлаждающей воды

Температура охлаждающей воды на входе в конденсатор измеряется на каждом напорном водоводе в одной точке. Температура воды на выходе из конденсатора должна измеряться не менее чем в трех точках в одном поперечном сечении каждого сливного водовода на расстоянии 5-6 м от выходного фланца конденсатора и определяться как средняя по показаниям термометров во всех точках.

Температура охлаждающей воды должна измеряться ртутными лабораторными термометрами с ценой деления 0,1 °С, установленными в термометрических гильзах длиной не менее 300 мм.

3.5. Гидравлическое сопротивление

Контроль за загрязнением трубных досок и трубок конденсатора осуществляется по гидравлическому сопротивлению конденсатора по охлаждающей воде, для чего измеряется перепад давлений между напорными и сливными патрубками конденсаторов ртутным двухстекольным U-образным дифманометром, устанавливаемым на отметке ниже точек измерения давления. Импульсные линии от напорного и сливного патрубков конденсаторов должны быть заполнены водой.

Гидравлическое сопротивление (мм вод.ст.) конденсатора определяется по формуле

Где - перепад, измеренный по прибору (с поправкой на температуру столба ртути), мм рт.ст.

При измерении гидравлического сопротивления одновременно определяется и расход охлаждающей воды в конденсатор для возможности сравнения с гидравлическим сопротивлением по Нормативным характеристикам.

3.6. Расход охлаждающей воды

Расход охлаждающей воды на конденсатор определяется по тепловому балансу конденсатора или непосредственным измерением сегментными диафрагмами, устанавливаемыми на напорных подводящих водоводах. Расход охлаждающей воды (м/ч) по тепловому балансу конденсатора определяется по формуле

Где - разность теплосодержаний отработавшего пара и конденсата, ккал/кг;

Теплоемкость охлаждающей воды, ккал/кг·°С, равная 1;

Плотность воды, кг/м, равная 1.

При составлении Нормативных характеристик принималась равной 535 или 550 ккал/кг в зависимости от режима работы турбины.

3.7. Воздушная плотность вакуумной системы

Воздушная плотность вакуумной системы контролируется по количеству воздуха на выхлопе пароструйного эжектора.

4. ОЦЕНКА СНИЖЕНИЯ МОЩНОСТИ ТУРБОУСТАНОВКИ ПРИ ЭКСПЛУАТАЦИИ С ПОНИЖЕННЫМ ПО СРАВНЕНИЮ С НОРМАТИВНЫМ ВАКУУМОМ

Отклонение давления в конденсаторе паровой турбины от нормативного приводит при заданном расходе тепла на турбоустановку к снижению развиваемой турбиной мощности.

Изменение мощности при отличии абсолютного давления в конденсаторе турбины от нормативного его значения определяется по полученным экспериментальным путем поправочным кривым. На графиках поправок, включенных в данные Нормативные характеристики конденсаторов, показано изменение мощности для различных значений расхода пара в ЧНД турбины. Для данного режима турбоагрегата определяется и по соответствующей кривой снимается значение изменения мощности при изменении давления в конденсаторе от до .

Это значение изменения мощности и служит основой для определения превышения удельного расхода тепла или удельного расхода топлива, установленных при данной нагрузке для турбины.

Для турбин Т-50-130 ТМЗ, ПТ-60-130/13 и ПТ-80/100-130/13 ЛМЗ расход пара в ЧНД для определения недовыработки мощности турбины из-за повышения давления в конденсаторе может быть принят равным расходу пара в конденсатор.

I. НОРМАТИВНАЯ ХАРАКТЕРИСТИКА КОНДЕНСАТОРА К2-3000-2 ТУРБИНЫ Т-50-130 ТМЗ

1. Технические данные конденсатора

Площадь поверхности охлаждения:

без встроенного пучка

Диаметр трубок:

наружный

внутренний

Количество трубок

Число ходов вода

Число потоков

Воздухоудаляющее устройство - два пароструйных эжектора ЭП-3-2

  • при конденсационном режиме - по давлению пара в IV отборе:

2.3. Разность теплосодержаний отработавшего пара и конденсата () принимать:

Рис.I-1. Зависимость температурного напора от расхода пара в конденсатор и температуры охлаждающей воды:

7000 м/ч; =3000 м

Рис.I-2. Зависимость температурного напора от расхода пара в конденсатор и температуры охлаждающей воды:

5000 м/ч; =3000 м

Рис.I-3. Зависимость температурного напора от расхода пара в конденсатор и температуры охлаждающей воды:

3500 м/ч; =3000 м

Рис.I-4. Зависимость абсолютного давления от расхода пара в конденсатор и температуры охлаждающей воды:

7000 м/ч; =3000 м

Рис.I-5. Зависимость абсолютного давления от расхода пара в конденсатор и температуры охлаждающей воды:

5000 м/ч; =3000 м

Рис.I-6. Зависимость абсолютного давления от расхода пара в конденсатор и температуры охлаждающей воды:

3500 м/ч; =3000 м

Рис.I-7. Зависимость температурного напора от расхода пара в конденсатор и температуры охлаждающей воды:

7000 м/ч; =2555 м

Рис.I-8. Зависимость температурного напора от расхода пара в конденсатор и температуры охлаждающей воды:

5000 м/ч; =2555 м

Рис.I-9. Зависимость температурного напора от расхода пара в конденсатор и температуры охлаждающей воды:

3500 м/ч; =2555 м

Рис.I-10. Зависимость абсолютного давления от расхода пара в конденсатор и температуры охлаждающей воды:

7000 м/ч; =2555 м

Рис.I-11. Зависимость абсолютного давления от расхода пара в конденсатор и температуры охлаждающей воды:

5000 м/ч; =2555 м

Рис.I-12. Зависимость абсолютного давления от расхода пара в конденсатор и температуры охлаждающей воды:

3500 м/ч; =2555 м

Рис.I-13. Зависимость гидравлического сопротивления от расхода охлаждающей воды в конденсатор:

1 - полная поверхность конденсатора; 2 - с отключенным встроенным пучком

Рис.I-14. Поправка к мощности турбины Т-50-130 ТМЗ на отклонение давление пара в конденсаторе (по данным "Типовой энергетической характеристики турбоагрегата Т-50-130 ТМЗ" . М.: СПО Союзтехэнерго, 1979)

Рис.l-15. Зависимость расхода пара через турбину Т-50-130 ТМЗ от расхода свежего пара и давления в верхнем теплофикационном отборе (при двухступенчатом подогреве сетевой воды) и давления в нижнем теплофикационном отборе (при одноступенчатом подогреве сетевой воды):

а - расход пара через 21-ю ступень; б - расход пара через 23-ю ступень

II. НОРМАТИВНАЯ ХАРАКТЕРИСТИКА КОНДЕНСАТОРА 60КЦС ТУРБИНЫ ПТ-60-130/13 ЛМЗ

1. Технические данные

Полная площадь поверхности охлаждения

Номинальный расход пара в конденсатор

Расчетное количество охлаждающей воды

Активная длина конденсаторных трубок

Диаметр трубок:

наружный

внутренний

Количество трубок

Число ходов воды

Число потоков

Воздухоудаляющее устройство - два пароструйных эжектора ЭП-3-700

2. Указания по определению некоторых параметров конденсационной установки

2.1. Давление отработавшего пара в конденсаторе определять как среднее значение по двум измерениям.

Расположение точек измерения давления пара в горловине конденсатора показано на схеме. Точки измерения давления расположены в горизонтальной плоскости, проходящей на 1 м выше плоскости соединения конденсатора с переходным патрубком.

2.2. Расход пара в конденсатор определять:

  • при конденсационном режиме - по давлению пара в V отборе;
  • при теплофикационном режиме - в соответствии с указаниями разд.3.

2.3. Разность теплосодержания отработавшего пара и конденсата () принимать:

  • для конденсационного режима 535 ккал/кг;
  • для теплофикационного режима 550 ккал/кг.

Рис.II-1. Зависимость температурного напора от расхода пара в конденсатор и температуры охлаждающей воды:

Рис.II-2. Зависимость температурного напора от расхода пара в конденсатор и температуры охлаждающей воды:

Рис.II-3. Зависимость температурного напора от расхода пара в конденсатор и температуры охлаждающей воды:

Рис.II-4. Зависимость абсолютного давления от расхода пара в конденсатор и температуры охлаждающей воды:

Рис.II-5. Зависимость абсолютного давления от расхода пара в конденсатор и температуры охлаждающей воды:

Рис.II-6. Зависимость абсолютного давления от расхода пара в конденсатор и температуры охлаждающей воды.

Турбина Т -100/120-130

Одновальная паровая турбина Т 100/120-130 номинальной мощностью 100МВт при 3000 обр./мин. С конденсацией и двумя отопительными отборами пара предназначена для непосредственного привода генератора переменного тока, типа ТВФ-100-2мощностью 100МВт с водородным охлаждением.

Турбина рассчитана на работу с параметрами свежего пара 130 ата и температурой 565С, измеренные перед стопорным клапаном.

Номинальная температура охлаждающей воды на входе в конденсатор 20С.

Турбина имеет два отопительных отбора: верхний и нижний, предназначенные для ступенчатого подогрева сетевой воды в бойлерах.

Турбина может принимать нагрузку до 120МВТ при определенных величинах отопительных отборов пара.

Турбина ПТ -65/75-130/13

Турбина конденсационная с регулируемыми отборами пара на производство и теплофикацию без промперегрева, двухцилиндровая, однопоточная, мощностью 65 МВт.

Турбина рассчитана на работу со следующими параметрами пара:

Давление перед турбиной 130 кгс/см 2 ,

Температура пара перед турбиной 555 °С,

Давление пара в производственном отборе 10-18 кгс/см 2 ,

Давление пара в теплофикационном отборе 0,6-1,5 кгс/см 2 ,

Номинальное давление пара в конденсаторе 0,04 кгс/см 2 .

Максимальный расход пара на турбину составляет 400 т/ч, максимальный отбор пара на производство - 250 т/ч, максимальное количество отпускаемого тепла с горячей водой - 90 Гкал/ч.

Регенеративная установка турбины состоит из четырех подогревателей низкого давления, деаэратора 6 кгс/см 2 и трех подогревателей высокого давления. Часть охлаждающей воды после конденсатора отбирается на водоприготовительную установку.

Турбина Т-50-130

Одновальная паровая турбина Т-50-130 номинальной мощностью 50 МВт при 3000 об/ мин с конденсацией и двумя отопительными отборами пара предназначена для привода генератора переменного тока, типа ТВФ 60-2 мощностью 50 МВт с водородным охлаждением. Управление пущенной в работу турбиной производиться со щита контроля и управления.

Турбина рассчитана для работы с параметрами свежего пара 130 ата, 565 С 0 , измеренными перед стопорным клапаном. Номинальная температура охлаждающей воды на входе в конденсатор 20 С 0 .

Турбина имеет два отопительных отбора, верхний и нижний, предназначенные для ступенчатого подогрева сетевой воды в бойлерах. Подогрев питательной воды осуществляется последовательно в холодильниках основного эжектора и эжектора отсоса пара из уплотнений сальниковым подогревателем, четырех ПНД и трех ПВД. ПНД №1 и №2 питаются паром из отопительных отборов, а остальные пять - из нерегулируемых отборов после 9, 11, 14, 17, 19 ступеней.

Конденсаторы

Основным назначением конденсационного устройства является конденсация отработавшего пара турбина и обеспечение оптимального давления пара за турбиной при номинальных условиях работы.

Помимо поддержания давления отработавшего пара на требуемом для экономичной работы турбоустановки уровне, обеспечивает поддержание конденсата отработавшего пара и его качество соответствующее требованиям ПТЭ и отсутствие переохлаждения по отношению к температуре насыщения в конденсаторе.

Тип до и после перемаркировки

Тип конденсатора

Расчетное количество охлаждающей воды, т/ ч

Номинальный расход пара на конденсатор, т/ ч

демонтаж

Технические данные конденсатора 65КЦСТ:

Поверхность теплопередачи, м 3 3000

Количество охлаждающих труб, шт. 5470

Внутренний и наружный диаметр, мм 23/25

Длина конденсаторных труб, мм 7000

Материал труб - медно-никелевый сплав МНЖ5-1

Номинальный расход охлаждающей воды, м 3 /ч 8000

Число ходов охлаждающей воды, шт. 2

Число потоков охлаждающей воды, шт. 2

Масса конденсатора без воды, т. 60,3

Масса конденсатора с заполненным водяным пространством, т 92,3

Масса конденсатора с заполненным паровым пространством при гидроиспытании, т 150,3

Коэффициент чистоты труб, принятый в тепловом расчете конденсатора 0,9

Давление охлаждающей воды, МПа (кгс/см 2) 0,2(2,0)

Аннотация

ГЛАВА 1. РАСЧЕТ ТЕПЛОВОЙ СХЕМЫ ТУРБИНЫ Т 50/60-130………..……7

1.1. Построение графиков нагрузки……………...…………………………..7

1.2. Построение цикла паротурбинной установки….……….…………….12

1.3. Распределение подогрева воды по ступеням………………………….17

1.4. Расчет тепловой схемы.………………………………………………...21

ГЛАВА 2. ОПРЕДЕЛЕНИЕ ТЕХНИКО-ЭКОНОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ……………………………………………………………………31

2.1. Годовые технико-экономические показатели………………. ..……...31

2.2. Выбор парогенератора и топлива……..…….…………………………33

2.3. Расход электроэнергии на собственные нужды…….………………...34

ГЛАВА 3. ЗАЩИТА ОКРУЖАЮЩЕЙ СРЕДЫ ОТ ВРЕДНОГО ВОЗДЕЙСТВИЯ ТЭС...…………………………………………………………...38

3.1. Правила техники безопасности при эксплуатации паровых турбин..43

ГЛАВА 4. ТЕХНИКО-ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ЭНЕРГОБЛОКА ТЭС………………………………………………………….…..51

4.1. Необходимость реализации проекта и технические решения………51

4.2. Капиталовложения……………………………………………………...51

4.3. Затраты…………………………………………………………………..60

4.4. Себестоимость тепло- и электроэнергии……………………………...65

Заключение………………………………………………………………………….68

Список использованных источников ……………………………………………..69

Приложение…………………………………………………………………………70

ВВЕДЕНИЕ






Исходные данные:
Количество блоков, шт.: 1

Тип турбины: Т-50/60-130

Мощность номинальная/максимальная, МВт: 50/60

Расход свежего пара номинальный/максимальный, т/ч: 245/255

Температура пара перед турбиной, 0 С: t 0 = 555

Давление пара перед турбиной, бар: Р 0 = 128

Пределы изменения давления в регулируемых отборах, кгс/см 2 отопительного

верхнего/нижнего: 0,6…2,5/0,5…2

Расчетная температура питательной воды, 0 С: t пв = 232

Давление воды в конденсаторе, бар: Р к = 0,051

Расчетный расход охлаждающей воды, м 3 /ч: 7000

Расчетный режим теплофикации: Температура включения ПВК

Коэффициент теплофикации: 0,5

Район функционирования: г. Иркутск

Расчетная температура воздуха 0 С.

Температура прямой сетевой воды: t п.с. = 150 0 С

Температура обратной сетевой воды: t о.с. = 70 0 С

ГЛАВА 1. РАСЧЕТ ТЕПЛОВОЙ СХЕМЫ ТУРБИНЫ Т–50/60–130

Режим работы ТЭУ и показатели их экономичности определяются графиками тепловых нагрузок, расходом и температурой сетевой воды. Отпуск теплоты, температуры прямой и обратной сетевой воды и расход воды определяются температурой наружного воздуха, соотношением нагрузок отопления и горячего водоснабжения. Отпуск теплоты в соответствии с графиком нагрузки обеспечивается за счет теплофикационных отборов турбин с подогревом сетевой воды в основных сетевых подогревателях и пиковых источников теплоты.
1.1. Построение графиков нагрузки
График продолжительности стояния температур наружного воздуха

(линия 1 на рис.1.1) для г. Иркутск. Информация для построения графика приведена в таблице 1.1и таблице 1.2
Таблица 1.1


Наименование города

Число суток за отопительный период со среднесуточной температурой наружного воздуха, 0 С

Расчетная температура воздуха, 0 С

-35

-30

-25

-20

-15

-10

-5

0

+8

Иркутск

2,1

4,8

11,9

16,9

36

36

29,6

42,4

63

-38

Таблица 1.2

Для интервала температур на оси ординат соответствует число суток в часах на оси абсцисс.

График зависимости тепловой нагрузки от температуры наружного воздуха . Данный график задаётся тепловым потребителем с учётом норм теплоснабжения и качественного регулирования тепловой нагрузки.При расчётной для отопления температуре наружного воздуха откладывается максимальное значение тепловых нагрузок по отпуску теплоты с сетевой водой:

–коэффициент теплофикации.

Среднегодовая тепловая нагрузка горячего водоснабжения принимается

независящей от и отмечается на базе графика, МВт:
, (1.2)

Значения при различных определяются из выражения:

(1.3)

где +18расчётная температура, при которой наступает состояние теплового равновесия.

Началу и окончанию отопительного сезона соответствует температура наружного воздуха =+8 0 С. Распределяется тепловая нагрузка между основными и пиковыми источниками теплоты с учётом номинальной нагрузки отборов турбины. Для заданного типа турбин находится и откладывается на графике.
Температурный график прямой и обратной сетевой воды.
При расчётной температуре теплового равновесия +18 0 С оба температурных графика (линии 3 и 4 на рис. 1.1) исходят из одной точки с координатами по оси абсцисс и ординат, равными +18 0 С. По условиям горячего водоснабжения температура прямой воды не может быть менее 70 , поэтому линия 3 имеет излом при (точка А), а на линии 4 соответствующий излом в точке В.

Максимально возможная температура подогрева сетевой воды ограничена температурой насыщения греющего пара, определяемой предельным давлением парав Т–отборе турбины данного типа.

Падение давления в линии отбора принимается таким образом,

где – температура насыщения при данном давлениипара в сетевом подогревателе,-недогрев до температуры насыщения греющего пара.

отчет по практике

6. Турбина Т-50-130

Одновальная паровая турбина Т-50-130 номинальной мощностью 50 МВт при 3000 об/ мин с конденсацией и двумя отопительными отборами пара предназначена для привода генератора переменного тока, типа ТВФ 60-2 мощностью 50 МВт с водородным охлаждением. Управление пущенной в работу турбиной производиться со щита контроля и управления.

Турбина рассчитана для работы с параметрами свежего пара 130 ата, 565 С 0 , измеренными перед стопорным клапаном. Номинальная температура охлаждающей воды на входе в конденсатор 20 С 0 .

Турбина имеет два отопительных отбора, верхний и нижний, предназначенные для ступенчатого подогрева сетевой воды в бойлерах. Подогрев питательной воды осуществляется последовательно в холодильниках основного эжектора и эжектора отсоса пара из уплотнений сальниковым подогревателем, четырех ПНД и трех ПВД. ПНД №1 и №2 питаются паром из отопительных отборов, а остальные пять - из нерегулируемых отборов после 9, 11, 14, 17, 19 ступеней.

"right">Таблица

Газотурбинная установка типа ТА фирмы "Рустом и Хорнсби" мощностью 1000 кВт

Газовая турбина (turbine от лат. turbo вихрь, вращение) -- это тепловой двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и нагретого газа преобразуется в механическую работу на валу. Состоит из ротора (рабочие лопатки...

Изучение системы теплоснабжения на Уфимской теплоэлектроцентрали

Паровая турбина типа ПТ-30-90/10 номинальной мощностью 30000 кВт, при частоте вращения 3000 об/мин, конденсационная, с тремя нерегулируемыми и двумя регулируемыми отборами пара - предназначена для непосредственного привода генератора...

Изобретение греческого механика и учёного Герона Александрийского (II век до нашей эры). Ёе работа основана на принципе реактивного движения: пар из котла поступал по трубке в шар...

Источники энергии - история и современность

История промышленной паровой турбины началась с изобретения шведским инженером Карлом - Густавом - Патриком де Лавалем …сепаратора для молока. Сконструированный аппарат требовал для себя привода с большим числом оборотов. Изобретатель знал...

Источники энергии - история и современность

Газовая турбина была двигателем, совмещавшим в себе полезные свойства паровых турбин (передача энергии к вращающемуся валу непосредственно...

Конструкция оборудования энергоблока Ростовской АЭС

Назначение Турбина типа К-1000-60/1500-2 производственного объединения ХТГЗ - паровая, конденсационная, четырехцилиндровая (структурная схема "ЦВД + три ЦНД"), без регулируемых отборов пара...

Повышение изностойкости паротурбинных установок

Паровая турбина - тепловой двигатель, в котором энергия пара преобразуется в механическую работу. В лопаточном аппарате паровой турбины потенциальная энергия сжатого и нагретого водяного пара преобразуется в кинетическую...

Предназначение котельно-турбинного цеха

Проект АЭС мощностью 2000 МВт

Турбина предназначена для непосредственного привода генератора пременого тока ТВВ-1000-2 для работы на АЭС в блоке с водо-водяным реактором ВВЭР-1000 на насыщенном паре по моноблочной схеме (блок состоит из одного реактора и одной турбины) при...

Проект первой очереди БГРЭС-2 с использованием турбины К-800-240-5 и котлоагрегата Пп-2650-255

Приводная турбина ОК-18ПУ-800 (К-17-15П), одноцилиндровая, унифицированная, конденсационная, с восемью ступенями давления, рассчитана на работу с переменным числом оборотов при переменных начальных параметрах пара...

27. Давление на выходе из КС: 28. Расход газа через турбину ВД: 29. Работа, совершаемая газом в турбине ВД: 30. Температура газа за турбиной ВД: , где 31. КПД турбины ВД задан: 32. Степень понижения давления в турбине ВД: 33...

Расчет компрессора высокого давления

34. Расход газа через турбину низкого давления: У нас температура более 1200К, поэтому выбираем GВохлНД по зависимости 35. Работа газа совершаемая в турбине НД: 36. КПД турбины низкого давления задано: 37. Степень понижения давления в турбине НД: 38...

Турбина паровая теплофикационная стационарная типа Турбина ПТ -135/165-130/15 с конденсационным устройством и регулируемыми производственным и двумя отопительными отборами пара номинальной мощностью 135 МВт...

Устройство и техническая характеристика оборудования ООО "ЛУКОЙЛ–Волгоградэнерго" Волжская ТЭЦ

Одновальная паровая турбина Т 100/120-130 номинальной мощностью 100МВт при 3000 обр./мин. С конденсацией и двумя отопительными отборами пара предназначена для непосредственного привода генератора переменного тока...

Устройство и техническая характеристика оборудования ООО "ЛУКОЙЛ–Волгоградэнерго" Волжская ТЭЦ

Турбина конденсационная с регулируемыми отборами пара на производство и теплофикацию без промперегрева, двухцилиндровая, однопоточная, мощностью 65 МВт...