Равномерное движение по окружности. Движение по окружности

a t = dv/dt = R.dw/dt = Re; (3.88).

a n = v 2 /R = w 2 R; (3.89).

a 2 = a t 2 + a n 2 = (dv/dt) 2 + (v 2 /R) 2 = R(e 2 + w 2). (3.90).

Пpи вpащении твеpдого тела вокpуг неподвижной оси все точки тела движутся по окpужностям с центpами, pасположенными на оси вpащения. Линейные величины для точек вpащающегося твеpдого тела связаны с угловыми, т.к. во все фоpмулы этих соотношений будет входить pадиус вpащения точки.

Связь между линейными и угловыми величинами выражается следующими формулами: s = Rj. (3.91).

v = Rw, (3.92).

a t = Re, (3.93).

a n = Rw 2 . (3.94).

При равноускоренном движении по окружности все виды ускорений отличны от нуля, только a t = const. (3.95). w = w 0 + et; (3.96).

j = j 0 + w 0 t + (et 2)/2. (3.97).

Для частного случая криволинейного движения - движения по окружности радиуса R , угловые характеристики движения связаны с линейными характеристиками весьма просто: Dj = Ds/R; (3.98).

w = dj/dt = v/R; (3.99).

e = dw/dt = d 2 j/dt 2 = a/R . (3.100).

Между движением твеpдого тела вокpуг неподвижной оси и движением отдельной матеpиальной точки (поступательным движением) существует аналогия. Кооpдинате соответствует угол, линейной скоpости - угловая скоpость, линейному (касательному) ускоpению - угловое ускоpение. Вектор называется аксиальным вектором, тогда как вектор перемещения ∆r является полярным вектором (к ним также относятся векторы скорости и ускорения). Полярный вектор имеет точку приложения (полюс), а аксиальный вектор имеет только длину и направление (по оси), но не имеет точки приложения.

z:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\Fwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\Bwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Fwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Bwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\Fwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\Bwd_h.gifЛекция № 4.

ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ.

Раздел механики, изучающий законы взаимодействия тел, называется динамикой. Причиной движения тел и изменения его характера с течением времени является взаимодействие тел. Взаимодействия происходят в пространстве и поэтому используют понятие силового поля

Сила, как количественная характеристика является мерой интенсивности взаимодействия тел. В механике сила является вектором: она задается величиной (модулем), направлением действия (вектором) и точкой приложения.

В физике различают четыре типа взаимодействий (сил):

1) гравитационные;

2) электромагнитные;

3) сильные (между элементарными частицами);

Слабые (при превращениях элементарных частиц).

Все механические силы делятся на консервативные и неконсервативные. Консервативными называются силы, работа которых не зависит от пути, а определяется только координатами точек начального и конечного положений приложения сил.

В механике действует принцип независимости сил: если на материальную точку действует одновременно несколько сил,

то каждая из этих сил сообщает материальной точке ускорение, по второму закону Ньютона, так как будто других сил не было. Сила характеризуется числовым значением, направлением и точкой приложения и является мерой механического воздействия на тело.

ЗАКОНЫ НЬЮТОНА.

Первый закон Ньютона.

Всякое тело находится в состоянии покоя или равномерного прямолинейного движения, если равнодействующая всех сил действующих на это тело равна нулю. Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью.

Масса тела - физическая величина, являющаяся одной из основных характеристик материи, определяющая, ее инерциальные (инертная масса) и гравитационные (гравитационная масса) свойства.

Инертностью называется свойство тел оказывать сопротивление при попытках привести его в движение или изменить величину или направление его скорости. Равнодействующей всех сил, действующих на тело, называется векторная сумма всех сил, действующих на тело,

F рез. = SF i .= 0. (4.1).

z:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Fwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Bwd_h.gif В системе СИ масса тела измеряется в килограммах (кг) .

Второй закон Ньютона.

Во втором законе Ньютона устанавливается связь между воздействием на тело - силой и реакцией на воздействие, которая проявляется в изменении скорости, т.е. в ускорении.

Ускорение, с которым движется тело, прямо пропорционально действующей на тело результирующей силе и обратно пропорционально массе тела.

F рез. = am = m(dv/dt) = d(mv)/dt = dp/dt. (4.2).

В СИ за единицу силы принимается сила, которая сообщает телу массой 1 кг ускорение 1 м/с 2 . и называется ньютоном (Н) .

Третий закон Ньютона.

Силы, с которыми тела действуют друг на друга, равны по величине и противоположны по направлению, но никогда не уравновешивают друг друга, поскольку приложены к разным телам, хотя и имеют одну природу.

F 12 = - F 21 . (4.3).

Сила F 12 , с которой первое тело действует на второе, равна по модулю силе F 21 , с которой второе тело действует на первое, но противоположна ей по направлению. z:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Fwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Bwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Fwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Bwd_h.gif Третий закон Ньютона позволяет осуществить переход от динамики отдельной материальной точки к динамике системы материальных точек. Совокупность материальных точек, рассматриваемых как целое, называется механической системой.

ТОЧКИ ПРИЛОЖЕНИЯ СИЛ.

Действующая сила всегда вызывает равную по модулю и противоположную по направлению силу противодействия, то, следовательно, их равнодействующая должна быть равна нулю и тела вообще не могут приобрести ускорения. Во втором законе Ньютона говорится об ускорении под действием приложенных к телу сил. Нулевое ускорение означает равенство нулю суммы сил, приложенных к одному телу. Третий же закон Ньютона говорит о равенстве сил, приложенных к различным телам. На каждое из двух, взаимодействующих, тел действует только одна сила. Третий закон Ньютона позволяет осуществить переход от динамики отдельной материальной точки к динамике системы материальных точек. Для системы точек взаимодействие сводится к силам парного взаимодействия. Совокупность материальных точек, рассматриваемых как единое целое, называется механической системой. Силы взаимодействия внутри механической системы называются внутренними. Силы, с которыми на систему, действуют внешние тела - внешними.

СИЛЫ ТРЕНИЯ.

Трение z:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Fwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Bwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Fwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Bwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Fwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Bwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Fwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Bwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Fwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Bwd_h.gif возникает при соприкосновении двух тел. Силы трения, как и силы упругости, имеют электромагнитную природу. Они возникают вследствие взаимодействия между атомами и молекулами. Силами сухого трения называют силы, возникающие при соприкосновении двух твердых тел. Они всегда направлены по касательной к соприкасающимся поверхностям. Если тела неподвижны друг относительно друга, то имеем трение покоя, а если же они движутся относительно друга, то в зависимости от характера их движения то наблюдаем трение скольжения, качения или верчения. Сила трения покоя всегда равна по величине внешней силе и направлена в противоположную сторону. Сила трения покоя не может превышать некоторого максимального значения (F Тр.) max .

Если внешняя сила больше (F Тр.) max . , возникает относительное проскальзывание. Силу трения в этом случае называют силой трения скольжения. Сила трения скольжения пропорциональна силе нормального давления тела на опору, и силе реакции опоры N:

F Тр. =(F Тр.) max . =μN. (4.4)

…………………………………………………………………………………….

Рис. 22.

Коэффициент пропорциональности μ называют коэффициентом трения скольжения. Коэффициент трения μ – величина безразмерная. Он зависит от материалов соприкасающихся тел и от качества поверхностей. Значение m варьируется: от 1 до 0,001. Поверхностные атомы имеют меньшее число соседей, с которыми можно взаимодействовать. При скольжении эти контакты все время обновляются, происходит непрерывный обмен связей между парами атомов двух тел. Трение качения возникает между шарообразным или цилиндрическим телом и твердой поверхностью, по которой оно катится (трение качения всегда заметно меньше трения скольжения). Трение качения - тоже результат обмена атомно-молекулярными связями. При скольжении тел связи на контакте обмениваются одновременно, т.е. все разом.

А при качении это происходит последовательно и малыми порциями.

Сила трения качения подчиняется тому же экспериментальному закону, что и трение скольжения:

F тр.кач = m кач (N/R) (4.5).

Она пропорциональна силе нормальной реакции опоры N (т.е. прижимающей силе), обратно пропорциональна радиусу колеса и приближенно не зависит от скорости движения. При качении скорость обмена поверхностными связями очень мала .

Трение бывает внешнее и внутреннее. Внешним трением называется трение, возникающее в плоскости касания двух соприкасающихся тел при их относительном перемещении.

При движении твердого тела в жидкости или газе на него действует сила, препятствующая движению. При малых скоростях сила сопротивления пропорциональна первой степени скорости тела:

F тр. = - k 1 v , (4.6)

при больших - пропорциональна квадрату скорости:

F тр. = - k 2 v. (4.7).

Коэффициенты сопротивления k 1 и k 2 , а также область скоростей, в которой осуществляется переход от линейного закона к квадратичному, в сильной степени зависят от формы и размеров тела, направления его движения, состояния поверхности тела и от свойств окружающей среды.

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным , оно является равноускоренным .

Угловая скорость

Выберем на окружности точку 1 . Построим радиус. За единицу времени точка переместится в пункт 2 . При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T - это время, за которое тело совершает один оборот.

Частота вращение - это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.


Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено - это есть период T . Путь , который преодолевает точка - это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения


Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна v A и v B соответственно. Ускорение - изменение скорости за единицу времени. Найдем разницу векторов.

  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Вы сейчас здесь: Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Электромагнитные волны. Понятие электромагнитной волны. Свойства электромагнитных волн. Волновые явления
  • Магнитное поле. Вектор магнитной индукции. Правило буравчика. Закон Ампера и сила Ампера. Сила Лоренца. Правило левой руки. Электромагнитная индукция, магнитный поток, правило Ленца, закон электромагнитной индукции, самоиндукция, энергия магнитного поля
  • Квантовая физика. Гипотеза Планка. Явление фотоэффекта. Уравнение Эйнштейна. Фотоны. Квантовые постулаты Бора.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.
  • 1 . Колесо при вращении имеет угловую скорость 10π рад/с. После торможения, за минуту его скорость уменьшилась до 6π рад/с. Найдите угловое ускорение колеса.

    2 . Маховик начал вращаться равноускоренно и за 10 с достиг угловой скорости 10π рад/с. Определите угловое ускорение маховика.

    3 . Укажите направление тангенциального ускорения в точках A , B , C , D при движении по окружности по часовой стрелке (рис. 1), если:

    а) если скорость увеличивается;

    б) уменьшается.

    4 . Определите тангенциальное ускорение колеса радиуса 30 см, если он начинает тормозить с угловым ускорением 0,2 рад/с 2 .

    5 . Определите угловое ускорение вала электродвигателя радиуса 0,5 см, если его тангенциальное ускорение равно 1 см/с 2 .

    6 . Сравните формулы, описывающие равноускоренное движение по прямой и по окружности, и, используя метод аналогии, заполните таблицу.

    Величины и формулы Равноускоренное движение по прямой (линейные величины) Равноускоренное движение по окружности (угловые величины)
    1 Скорость начальная υ 0
    2 Скорость конечная υ
    3 Перемещение Δr
    4 Ускорение a
    5 Формула для расчета ускорения \(~a_x = \frac{\upsilon_x - \upsilon_{0x}}{t}\)
    6 Формула для расчета скорости. \(~\upsilon_x = \upsilon_{0x} +a_x t\)
    7 Формулы для расчета перемещения \(~\Delta r_x = \upsilon_{0x} t + \frac{a_x t^2}{2}\) ; \(~\Delta r_x = \upsilon_x t - \frac{a_x t^2}{2}\) ; \(~\Delta r_x = \frac{\upsilon_x + \upsilon_{0x}}{2} \cdot t\) ; \(~\Delta r_x = \frac{\upsilon^2_x - \upsilon^2_{0x}}{2 a_x}\) ;

    7 . Маховик начал вращаться равноускоренно и через 10 с стал вращаться с периодом 0,2 с. Определите:

    б) угловое перемещение, которое он сделает за это время.

    8 . Маховик, вращающийся с частотой 2 Гц, останавливается в течении 1,5 мин. Считая движение маховика равнозамедленным, определите:

    а) угловое ускорение маховика;

    б) угловое перемещение маховика до полной остановки.

    9 . Диск вращается с угловым ускорением 2 рад/с 2 . Определите угловое перемещение диска при изменении частоты вращения от 4 Гц до 1,5 Гц?

    10 . Колесо, вращаясь равнозамедленно, при торможении уменьшило свою частоту за 1 мин от 5 Гц до 3 Гц. Найдите угловое перемещение, которые совершило колесо за время торможения.

    Уровень C

    1 . Маховик начинает вращаться равноускоренно из состояния покоя и за первые 2 мин делает 3600 оборотов. Найдите угловое ускорение маховика.

    2 . Ротор электродвигателя начинает вращаться из состояния покоя равноускоренно и за первые 5 с делает 25 оборотов. Вычислите угловую скорость ротора в конце пятой секунды.

    3 . Пропеллер самолета вращается с частотой равной 20 Гц. В некоторый момент времени выключают мотор. Сделав 80 оборотов, пропеллер останавливается. Сколько времени прошло с момента выключения мотора до остановки, если вращение пропеллера считать равнозамедленным?

    4 . Колесо, вращаясь равноускоренно, достигло угловой скорости 20 рад/с через 10 оборотов после начала вращения. Найдите угловое ускорение колеса.

    5 . Материальная точка движется по окружности. Когда центростремительное ускорение точки становится равным 3,2 м/с 2 , угол между вектором полного и центростремительного ускорений равен 60°. Найдите тангенциальное ускорение точки для этого момента времени.

    6 . Точка движется по кривой с постоянным тангенциальным ускорением 0,5 м/с 2 . Определите полное ускорение точки на участке кривой с радиусом кривизны 3 м в момент времени, когда линейная скорость равна 2 м/с.

    7 . Небольшое тело начинает движение по окружности радиусом 30 м с постоянным по модулю тангенциальным ускорением 5 м/с 2 . Найдите полное ускорение тела через 3 с после начала движения.

    8 . Диск радиусом 10 см, находящийся в состоянии покоя, начал вращаться с постоянным угловым ускорением 0,5 рад/с 2 . Найдите полное ускорение точек на окружности диска в конце второй секунды после начала вращения.

    9 . Угол поворота колеса радиусом 0,1 м изменяется по закону φ =π · t . Найдите угловую и линейную скорости, центростремительное и тангенциальное ускорения точек обода колеса.

    10 . Колесо вращается по закону φ = 5t t 2 . Найдите в конце первой секунды вращения угловую скорость колеса, а также линейную скорость и полное ускорение точек, лежащих на ободе колеса. Радиус колеса 20 см.

    Равномерное движение по окружности – это простейший пример . Например, по окружности движется конец стрелки часов по циферблату. Скорость движения тела по окружности носит название линейная скорость .

    При равномерном движении тела по окружности модуль скорости тела с течением времени не изменяется, то есть v = const, а изменяется только направление вектора скорости в этом случае отсутствует (a r = 0), а изменение вектора скорости по направлению характеризуется величиной, которая называется центростремительное ускорение () a n или а ЦС. В каждой точке вектор центростремительного ускорения направлен к центру окружности по радиусу.

    Модуль центростремительного ускорения равен

    a ЦС =v 2 / R

    Где v – линейная скорость, R – радиус окружности

    Рис. 1.22. Движение тела по окружности.

    Когда описывается движение тела по окружности, используется угол поворота радиуса – угол φ, на который за время t поворачивается радиус, проведённый из центра окружности до точки, в которой в этот момент находится движущееся тело. Угол поворота измеряется в радианах. равен углу между двумя радиусами окружности, длина дуги между которыми равна радиусу окружности (рис. 1.23). То есть если l = R, то

    1 радиан= l / R

    Так как длина окружности равна

    l = 2πR

    360 о = 2πR / R = 2π рад.

    Следовательно

    1 рад. = 57,2958 о = 57 о 18’

    Угловая скорость равномерного движения тела по окружности – это величина ω, равная отношению угла поворота радиуса φ к промежутку времени, в течение которого совершён этот поворот:

    ω = φ / t

    Единица измерения угловой скорости – радиан в секунду [рад/с]. Модуль линейной скорости определяется отношением длины пройденного пути l к промежутку времени t:

    v= l / t

    Линейная скорость при равномерном движении по окружности направлена по касательной в данной точке окружности. При движении точки длина l дуги окружности, пройденной точкой, связана с углом поворота φ выражением

    l = Rφ

    где R – радиус окружности.

    Тогда в случае равномерного движения точки линейная и угловая скорости связаны соотношением:

    v = l / t = Rφ / t = Rω или v = Rω

    Рис. 1.23. Радиан.

    Период обращения – это промежуток времени Т, в течение которого тело (точка) совершает один оборот по окружности.Частота обращения – это величина, обратная периоду обращения – число оборотов в единицу времени (в секунду). Частота обращения обозначается буквой n.

    n = 1 / T

    За один период угол поворота φ точки равен 2π рад, поэтому 2π = ωT, откуда

    T = 2π / ω

    То есть угловая скорость равна

    ω = 2π / T = 2πn

    Центростремительное ускорение можно выразить через период Т и частоту обращения n:

    a ЦС = (4π 2 R) / T 2 = 4π 2 Rn 2