Пример расчета воздухообмена в помещении. Как подобрать сечение воздуховода

Проектирование вентиляции жилого, общественного или производственного здания проходит в несколько этапов. Воздухообмен определяется исходя из нормативных данных, используемого оборудования и индивидуальных пожеланий заказчика. Объем проекта зависит от типа здания: одноэтажный жилой дом или квартира рассчитываются быстро, с минимальным количеством формул, а для производственного объекта требуется серьёзная работа. Методика расчета вентиляции строго регламентирована, а исходные данные прописаны в СНиП, ГОСТ и СП.

Подбор оптимальной по мощности и стоимости системы воздухообмена проходит пошагово. Порядок проектирования очень важен, так как от его соблюдения зависит эффективность работы конечного продукта:

  • Определение типа вентсистемы. Проектировщик анализирует исходные данные. Если требуется проветрить небольшое жилое помещение, то выбор падает на приточно-вытяжную систему с естественным побуждением. Этого будет достаточно, когда расход воздуха небольшой, вредных примесей нет. Если требуется рассчитать большой венткомплекс для завода или общественного здания, то предпочтение отдаётся механической вентиляции с функцией подогрева/охлаждения приточки, а если понадобится, то и с расчётом по вредностям.
  • Анализ выбросов. Сюда входит: тепловая энергия от осветительных приборов и станков; испарения от станков; выбросы (газы, химикаты, тяжёлые металлы).
  • Расчет воздухообмена. Задача систем вентилирования – удаление из помещения избытков тепла, влаги, примесей с равновесной или чуть отличающейся подачей свежего воздуха. Для этого определяется кратность воздухообмена, согласно которой подбирается оборудование.
  • Подбор оборудования. Производится по полученным параметрам: требуемый объем воздуха на приточку/вытяжку; температура и влажность внутри помещения; наличие вредных выбросов, подбираются вентустановки или готовые мультикомплексы. Самый важный из параметров – объём воздуха, необходимый для поддержания проектной кратности. Фильтры, калориферы, рекуператоры, кондиционеры и гидравлические насосы идут как дополнительные устройства сети, обеспечивающие качество воздуха.

Расчёт выбросов

Объём воздухообмена и интенсивность работы системы зависят от двух этих параметров:

  • Нормы, требования и рекомендации, прописанные в СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование», а также другой, более узкоспециализированной нормативной документации.
  • Фактические выбросы. Рассчитываются по специальным формулам для каждого источника, и приведены в таблице:

Тепловыделения, Дж

Двигатель электрический N – мощность двигателя по номиналу, Вт;

K1 – загрузочный коэффициент 0,7-0,9

k2η - коэффициент работы в одно время 0,5-1.

Приборы освещения
Человек n – расчётное число людей для этого помещения;

q – количество теплоты, которое выделяет организм одного человека. Зависит от температуры воздуха и интенсивности работы.

Поверхность бассейна V – скорость движение воздуха над водной поверхностью, м/с;

Т – температура воды, 0 С

F – площадь водного зеркала, м2

Влаговыделение, кг/ч

Водная поверхность, например бассейн Р - коэффициент массоотдачи;

F-площадь поверхности испарения, м 2 ;

Рн1, Рн2 - парциальные давления насыщенного водяного пара при определенной температуре воды и воздуха в помещении, Па;

РБ – давление барометрическое. Па.

Мокрый пол F - площадь мокрой поверхности пола, м 2 ;

t с, t м – температуры воздушных масс, замеренные по сухому/мокрому термометру, 0 С.

Используя данные, полученные в результате вычисления вредных выделений, проектировщик продолжает рассчитывать параметры вентиляционной системы.

Вычисление воздухообмена

Специалисты используют две основные схемы:

  • По укрупненным показателям. В данной методике не предусматриваются вредные выбросы, такие как тепло и вода. Условно назовем его «Способ №1».
  • Метод с учётом избытков тепла и влаги. Условное название «Способ №2».

Способ №1


Единица измерения - м 3 /ч (кубические метры в час). Применяют две упрощенные формулы:

L=K ×V(м 3 /ч); L=Z ×n (м 3 /ч), где

K – кратность воздухообмена. Отношение объёма приточки за одни час, к общему воздуху в помещении, крат в час;
V – объём помещения, м 3 ;
Z – значение удельного обмена воздуха за единицу верчения,
n – количество единиц измерения.

Подбор вентрешёток осуществляется по специальной таблице. При подборе также учитывается средняя скорость прохождение потока воздуха по каналу.

Способ №2

При расчёте учитывается ассимиляция тепла и влаги. Если в производственном или общественном здании избыток тепла, то используется формула:

где ΣQ - сумма тепловыделений от всех источников, Вт;
с – тепловая ёмкость воздуха, 1 кДж/(кг*К);
tyx – температура воздуха, направленного на вытяжку,°С;
tnp - температура воздуха, направленного на приточку,°С;
Температура воздуха, направленного на вытяжку:

где tp.3 – нормативная тем-ра в рабочей зоне, 0 С;
ψ- коэффициент увеличение температуры, зависящий от высоты измерения, равный 0,5-1,5 0 С/м;
Н – длина плеча от пола до середины вытяжки, м.

Когда технологический процесс предполагает выделение большого объема влаги, то используется другая формула:

где G – объём влаги, кг/ч;
dyx и dnp – содержание воды на один килограмм сухого воздуха приточки и вытяжки.

Существует несколько случаев, более подробно описанных в нормативной документации, когда требуемые воздухообмен определяется по кратности:

k – кратность смены воздуха в помещении, раз в час;
V - объём помещения, м 3 .

Расчёт сечения

Площадь поперечного сечения воздуховода измеряется в м 2 . Её можно посчитать по формуле:

где v – скорость воздушных масс внутри канала, м/с.

Различается для основных воздуховодов 6-12 м/с и боковых придатков не более 8 м/с. Квадратура влияет на пропускную способность канала, нагрузку на него, а также уровень шума и способ монтажа.

Расчёт потерь давления

Стенки воздуховода не гладкие, и внутренняя полость не заполнена вакуумом, поэтому часть энергии воздушных масс при движении теряется на преодоления этих сопротивлений. Величина потери рассчитывается по формуле:

где ג – сопротивление трению, определяется, как:

Формулы, приведенные выше, являются правильными для каналов круглого сечения. Если воздуховод квадратный или прямоугольный, то существует формула приведения к эквиваленту диаметра:

где a,b – размеры сторон канала, м.

Мощность напора и двигателя

Напор воздуха от лопастей H должен полностью компенсировать потери давления P, при этом создавая расчётное динамическое P д на выходе.

Мощность электрического двигателя вентилятора:

Подбор калорифера

Часто отопление интегрируется в систему вентиляции. Для этого используются калориферы, а также метод рециркуляции. Выбор устройства осуществляется по двум параметрам:

  • Q в – предельный расход тепловой энергии, Вт/ч;
  • F k – определение поверхности нагрева для калорифера.

Расчёт гравитационного давления

Применяется только для естественной системы вентилирования. С его помощью определяется её производительность без механического побуждения.

Подбор оборудования

По полученным данным о воздухообмене, форме и размере сечение воздуховодов и решёток, количестве энергии для обогрева подбирается основное оборудование, а также фитинги, дефлектор, переходники и другие сопутствующие детали. Вентиляторы подбираются с запасом мощности под пиковые периоды работы, воздуховоды с учетом агрессивности среды и объёмов вентилирования, а калориферы и рекуператоры - исходя из тепловых запросов системы.

Ошибки при проектировании

На этапе создания проекта нередко встречаются ошибки и недоработки. Это может быть , обратная или недостаточная тяга, задувание (верхние этажи многоэтажных жилых домов) и другие проблемы. Часть из них можно решить и после завершения монтажа, с помощью дополнительных установок.

Яркий пример низкоквалифицированного расчета - недостаточная тяга на вытяжке из производственного помещения без особо вредных выбросов. Допустим, вентканал заканчивается круглой шахтой, возвышающейся над крышей на 2 000 – 2 500 мм. Поднимать её выше не всегда возможно и целесообразно, и в подобных случаях используется принцип факельного выброса. В верхней части круглой вентшахты устанавливается наконечник с меньшим диаметром рабочего отверстия. Создаётся искусственное сужение сечения, которое влияет на скорость выброса газа в атмосферу - она многократно увеличивается.


Методика расчёта вентиляции позволяет получить качественную внутреннюю среду, правильно оценив негативные факторы, её ухудшающие. В компании «Мега.ру» работают профессиональные проектировщики инженерных систем любой сложности. Мы оказываем услуги на территории Москвы и соседних областей. Также компания успешно занимается удалённым сотрудничеством. Все способы связи указаны на странице , обращайтесь.









Благоприятный микроклимат в помещении - важное условие жизнедеятельности человека. Его в совокупности определяют температура, влажность и подвижность воздуха. Отклонения параметров негативно сказываются на здоровье и самочувствии, вызывают перегрев или переохлаждение тела. Недостаток кислорода приводит к гипоксии мозга и других органов.

Расчет и нормативы

Расчет вентиляции помещения производят при проектировании объекта согласно СНиП 13330.2012, 41-01-2003, 2.08.01-89. Но возникают случаи, когда ее работа неэффективна. Если проверка тяги бумажными полосками или пламенем зажигалки не выявила нарушение проходимости вентканалов, значит, вытяжная вентиляция не справляется со своими функциями по причине неправильно подобранного сечения.

Для чего нужна вентиляция

Задача вентиляции - обеспечить необходимый воздухообмен в помещении, создать оптимальные или приемлемые условия для длительного пребывания человека.

Исследования установили, что 80% времени люди проводят в помещениях. За один час в спокойном состоянии человек выделяет в окружающую среду 100 кКал. Теплоотдача происходит конвекцией, излучением и испарением. При недостаточно подвижном воздухе перенос энергии с поверхности кожи в пространство замедляется. В результате страдают многие функции организма, возникает ряд заболеваний.

Отсутствие или недостаточная вентиляция, особенно в помещениях с повышенной влажностью, приводит к застойным явлениям. Они сопровождаются нашествием трудновыводимых плесневых грибков, неприятными запахами и постоянной сыростью. Влага неблагоприятно отражается на строительных конструкциях, приводит к гниению деревянных и коррозии металлических элементов.

При избыточной тяге увеличивается выход воздушных масс в атмосферу, что зимой приводит к потере большого количества тепла. Растут затраты на отопление дома.

Качество и чистота воздуха - основной фактор, который определяет эффективность вентиляции. Загрязняющие испарения от строительных материалов, мебели, пыль и углекислый газ должны своевременно удаляться из помещения.

Существует обратная ситуация, когда воздух в доме или квартире гораздо чище, чем на улице. Выхлопные газы на оживленной трассе, дым или копоть, ядовитые загрязнения промышленных предприятий способны отравить атмосферу внутри помещений. Например, в центре большого города содержание угарного газа в 4-6 раз, диоксида азота в 3-40 раз, сернистого газа в 2-10 раз выше, чем в сельской местности.

Расчет вентиляции производят, чтобы определить вид системы воздухообмена, ее параметры, при которых будут сочетаться энергоэфективность жилья и благоприятный микроклимат в помещениях.

Параметры микроклимата для расчета

Нормативы согласно ГОСТ 30494-2011 определяют оптимальные и допустимые параметры качества воздуха в соответствии с назначением помещений. Они классифицируются стандартами на первую и вторую категорию. Это места, где люди отдыхают в положении лежа или сидя, занимаются учебой, умственным трудом.

В зависимости от периода года и назначения помещения установлены оптимальная и допустимая температура 17-27°С, относительная влажность 30-60% и скорость воздуха 0,15-0,30 м/с.

В жилых помещениях при расчете вентиляции определяют необходимый воздухообмен с применением удельных норм, в производственных - по допустимой концентрации загрязняющих веществ. При этом количество углекислого газа в воздухе не должно превышать 400-600 см³/м³.

На нашем сайте Вы можете найти контакты строительных компаний, которые предлагают услугу внутренней перепланировки . Напрямую пообщаться с представителями можно посетив выставку домов «Малоэтажная Страна».

Виды вентиляционных систем по способу создания тяги

Движение воздушных масс возникает в результате разницы давления между слоями воздуха. Чем больше градиент, тем сильнее побуждающая сила. Для ее создания применяют естественную, принудительную или комбинированную систему вентиляции, где используются приточные, вытяжные или рециркуляционные (смешанные) способы удаления воздуха. В промышленных и общественных зданиях предусмотрены аварийная и противодымная вентиляции.

Естественное вентилирование

Естественная вентиляция помещений происходит согласно физическим законам - за счет разницы температур и давлений между наружным и внутренним воздухом. Еще во времена Римской империи инженеры устанавливали в домах знати подобия шахт, которые служили для проветривания.

В комплекс естественной вентиляции входят наружные и внутренние проемы, фрамуги, форточки, стеновые и оконные клапаны, вытяжные шахты, вентканалы, дефлекторы.

Качество вентилирования зависит от объема проходящих воздушных масс и траектории их движения. Самым благоприятным является вариант, когда окна и двери расположены в противоположных концах комнаты. В этом случае при циркуляции воздуха происходит полноценная его замена по всему помещению.

Вытяжные каналы размещают в помещениях с наибольшим уровнем загрязнения, неприятных запахов и влажности - кухнях, санузлах. Приточный воздух поступает из других комнат и выдавливает отработанный на улицу.

Чтобы вытяжка работала в нужном режиме, ее верх должен находиться выше крыши дома на 0,5-1 м. Это создает необходимую разницу давлений для перемещения воздуха.

Естественная вентиляция бесшумна, не потребляет электроэнергии, не требует больших вложений на устройство. Воздушные массы, проникающие извне, не приобретают дополнительных свойств - не подогреваются, не очищаются и не увлажняются.

Рециркуляция воздуха ограничивается пределами одной квартиры. Из соседних помещений подсоса быть не должно.

Принудительная вентиляция стала использоваться с середины 19 века. Сначала большие вентиляторы применяли на рудниках, в трюмах кораблей, сушильных цехах. С появлением электрических двигателей в проветривании помещений произошла революция. Появились регулируемые приборы не только для промышленных, но и для бытовых нужд.

Теперь наружному воздуху при прохождении через систему принудительного вентилирования сообщают дополнительные ценные качества - его очищают, увлажняют или осушают, ионизируют, подогревают или охлаждают.

Вентиляторы и эжекторы перемещают большие объемы воздушных масс на значительных площадях. В систему входят электродвигатели, пылеуловители, нагреватели, шумоглушители, приборы контроля и автоматики. Их встраивают в воздуховодные каналы.

Видео описание

Подробнее о расчете вентиляции с рекуператором рассказывают в этом видео:

Расчет естественной вентиляции жилых помещений

Расчет заключается в определении расхода приточного воздуха L в холодный и теплый период года. Зная эту величину, можно подобрать площадь сечения воздуховодов.

Дом или квартиру рассматривают как единый воздушный объем, где циркуляция газов происходит через открытые двери или подрезанное на 2 см от пола полотно.

Приток происходит сквозь негерметичные окна, наружные ограждения и путем проветривания, удаление - через вытяжные вентканалы.

Объем находят по трем методикам - кратности, санитарным нормам и площади. Из полученных значений выбирают наибольшее. Перед тем, как рассчитать вентиляцию, определяют назначение и характеристики всех помещений.

Основная формула для первого расчета:

L=nхV, м³/ч, где

  • V - объем комнаты (произведение высоты на площадь),
  • n - кратность, определяемая по СНиП 2.08.01-89 в зависимости от расчетной температуры в помещении в зимний период.

По второй методике объем рассчитывают исходя из удельной нормы на человека, регламентируемой СНиП 41-01-2003. Учитывают количество постоянно проживающих людей, наличие газовой плиты и санузла. По таб.М1 расход 60 м³/чел в час.

Третий способ - по площади.

Расчет системы вентиляции: пример

Трехкомнатный дом общей площадью 80 м². Высота помещений 2,7 м. Проживает три человека.

  • Гостиная 25 м²,
  • спальня 15 м²,
  • спальня 17 м²,
  • санузел - 1,4² м²,
  • ванна - 2,6 м²,
  • кухня 14 м² с четырехкомфорной плитой,
  • коридор 5 м².

Отдельно находят расход по притоку и вытяжке, чтобы объем входящего воздуха был равен удаляемому.

  • гостиная L=25х3=75м³/ч, кратность по СниП.
  • спальни L=32х1=32 м³/ч.

Общий расход по притоку:

L общ=Lгост.+Lспал.=75+32=107 м³/ч.

  • санузел L= 50 м³/час (таб.СНиП 41-01-2003),
  • ванна L= 25 м³/час.
  • кухня L=90 м³/час.

Коридор по притоку не нормируется.

По вытяжке:

L=Lкух.+Lсануз.+ L ванны=90+50+25=165 м³/ч.

Приточный расход меньше вытяжки. Для дальнейших расчетов принимается наибольшая величина L=165 м³/ч.

По санитарным нормам расчет проводят исходя из количества жильцов. Удельный расход на одного человека составляет 60 м³.

L общ.=60х3=180м/ч.

С учетом временных посетителей, для которых установленный расход воздуха 20м/ч, можно принять L=200 м³/ч.

По площади расход определяют с учетом нормативной скорости воздухообмена 3м²/час на 1 м² жилого помещения.

L=57х3=171 м³/ч.

По результатам расчетов расход по санитарным нормам 200 м³/ч, кратности 165 м³/ч, по площади 171 м³/ч. Хотя все варианты правильны, при первом для проживающих условия будут комфортнее.

Итог

Зная воздушный баланс жилого дома, подбирают размер сечения воздуховодов. Чаще всего используют прямоугольные каналы с соотношением сторон 3:1 или круглые.

<

Для удобного расчета сечения можно воспользоваться онлайн калькулятором или диаграммой, где учитываются скорость и расход воздуха.

При вентиляции с естественным побуждением скорость в магистральных и ответвляющихся воздуховодах принимают равной 1 м/ч. В принудительной системе 5 и 3 м/ч соответственно.

При требуемом воздухообмене 200 м/ч достаточно выполнить естественную систему вентиляции. При больших объемах перемещаемого воздуха применяют смешанную рециркуляцию. В каналах монтируют рассчитанные по производительности приборы, которые обеспечат необходимые параметры микроклимата.

Правильное устройство вентиляции в доме значительно улучшает качество жизни человека. При неправильном расчете приточно – вытяжной вентиляции возникает куча проблем – у человека со здоровьем, у постройки с разрушением.

Перед началом строительства обязательно и необходимо произвести расчёты и, соответственно, применить их в проекте.


ФИЗИЧЕСКИЕ СОСТАВЛЯЮЩИЕ РАСЧЁТОВ

По способу работы, в настоящее время, вентиляционные схемы делятся на:

  1. Вытяжные. Для удаления использованного воздуха.
  2. Приточные. Для впуска чистого воздуха.
  3. Рекуперационные. Приточно-вытяжные. Удаляют использованный и впускают чистый.


В современном мире схемы вентиляции включают в себя различное дополнительное оборудование:

  1. Устройства для подогрева или охлаждения подаваемого воздуха.
  2. Фильтры для очистки запахов и примесей.
  3. Приборы для увлажнения и распределения воздуха по помещениям.


При расчёте вентиляции учитывают следующие величины:

  1. Расход воздуха в куб.м./час.
  2. Давление в воздушных каналах в атмосферах.
  3. Мощность подогревателя в квт-ах.
  4. Площадь сечения воздушных каналов в кв.см.


Расчет вытяжной вентиляции пример

Перед началом расчёта вытяжной вентиляции необходимо изучить СН и П (Система Норм и Правил) устройства вентиляционных систем. По СН и П количество воздуха необходимого для одного человека зависит от его активности.

Маленькая активность – 20 куб.м./час. Средняя – 40 кб.м./ч. Высокая – 60 кб.м./ч. Далее учитываем количество человек и объём помещения.

Кроме этого необходимо знать кратность – полный обмен воздуха в течение часа. Для спальни она равна единице, для бытовых комнат – 2, для кухонь, санузлов и подсобных помещений – 3.

Для примера – расчёт вытяжной вентиляции комнаты 20 кв.м.

Допустим, в доме живут два человека, тогда:

V(объём) комнаты равен: SхН, где Н – высота комнаты (стандартная 2,5 метра).

V = S х Н = 20 х 2,5 = 50 куб.м.

В таком же порядке рассчитываем производительность вытяжной вентиляции всего дома.


Расчет вытяжной вентиляции производственных помещений

При расчёте вытяжной вентиляции производственного помещения кратность равна 3.

Пример: гараж 6 х 4 х 2,5 = 60 куб.м. Работают 2 человека.

Высокая активность – 60 куб.м./час х 2 = 120 кб.м./ч.

V – 60 куб.м. х 3 (кратность) = 180 кб.м./ч.

Выбираем большее – 180 куб.м./час.

Как правило, унифицированные вентиляционные системы, для простоты установки разделяются на:

  • 100 – 500 куб.м./час. – квартирные.
  • 1000 – 2000 куб.м./час. – для домов и усадеб.
  • 1000 – 10000 куб.м./час. – для заводских и промышленных объектов.


Расчет приточно вытяжной вентиляции

ВОЗДУХОНАГРЕВАТЕЛЬ

В условиях климата средней полосы, воздух, поступающий в помещение необходимо подогревать. Для этого устанавливают приточную вентиляцию с обогревом входящего воздуха.

Нагрев теплоносителя осуществляется различными путями – электро калорифером, впуск воздушных масс около батарейного или печного отопления. Согласно СН и П температура входящего воздуха должна быть не менее 18 гр. цельсия.

Соответственно мощность воздухонагревателя рассчитывается в зависимости от самой низкой (в данном регионе) уличной температуры. Формула для расчета максимальной температуры нагрева помещения воздухонагревателем:

N /V х 2,98 где 2,98 – константа.

Пример: расход воздуха – 180 куб.м./час. (гараж). N = 2 КВт.

Таким образом, гараж можно нагреть до 18 град. При уличной температуре минус 15 град.

ДАВЛЕНИЕ И СЕЧЕНИЕ

На давление и, соответственно, скорость передвижения воздушных масс влияет площадь сечения каналов, а также их конфигурация, мощность электро вентилятора и количество переходов.

При расчёте диаметра каналов эмпирически принимают следующие величины:

  • Для помещений жилого типа – 5,5 кв.см. на 1 кв.м. площади.
  • Для гаража и других производственных помещений – 17,5 кв.см. на 1 кв.м.

При этом добиваются скорости потока 2,4 – 4,2 м/сек.

О РАСХОДЕ ЭЛЕКТРОЭНЕРГИИ

Расход электроэнергии напрямую зависит от длительности времени работы электронагревателя, а время – функция от температуры окружающего воздуха. Обыкновенно, воздух необходимо подогревать в холодное время года, иногда летом в прохладные ночи. Для расчёта используется формула:

S = (T1 х L х d х c х 16 + Т2 х L х c х n х 8) х N/1000

В этой формуле:

S – количество электроэнергии.

Т1 – максимальная дневная температура.

Т2 – минимальная ночная температура.

L – производительность куб.м./час.

с – объёмная теплоёмкость воздуха – 0, 336 вт х час/ кб.м./ град.ц. Параметр зависит от давления, влажности и температуры воздуха.

d – цена электроэнергии днём.

n – цена электроэнергии ночью.

N – количество дней в месяце.

Таким образом, если придерживаться санитарных норм, стоимость вентиляции существенно повышается, зато комфортность проживающих улучшается. Поэтому при устройстве вентиляционной системы целесообразно найти компромисс между ценой и качеством.

При устройстве системы вентиляции важно правильно подобрать и определить параметры всех элементов системы. Необходимо найти требуемое количество воздуха, подобрать оборудование, рассчитать воздуховоды, фасонные элементы и другие комплектующие вентиляционной сети. Как проводится расчет воздуховодов вентиляции? Что влияет на их размер и сечение? Разберем этот вопрос подробнее.

Воздуховоды необходимо рассчитывать с двух точек зрения. Во-первых, подбирается необходимое сечение и форма. При этом необходимо учитывать количество воздуха и другие параметры сети. Также уже при изготовлении рассчитывается количество материала, например, жести, для изготовления труб и фасонных элементов. Такой расчет площади воздуховодов позволяет заранее определить количество и стоимость материала.

Типы воздуховодов

Для начала пару слов скажем и материалах и типах воздуховодов. Это важно из-за того, что в зависимости от формы воздуховодов существуют особенности его расчета и выбора площади поперечного сечения. Также важно ориентироваться и на материал, так как от него зависит особенности движения воздуха и взаимодействие потока со стенками.

Если коротко, то воздуховоды бывают:

  • Металлические из оцинкованной или черной стали, нержавейки.
  • Гибкие из алюминиевой или пластиковой пленки.
  • Жесткие пластиковые.
  • Тканевые.

По форме воздуховоды изготовливаются круглого сечения, прямоугольного и овального. Наиболее часто используются круглые и прямоугольные трубы.

Большая часть из описанных воздуховодов изготовливаются в заводских условиях, например, гибкие из пластика или тканевые, и изготовить их на объекте или в небольшой мастерской сложно. Большая часть изделий, которым требуется расчет, производят из оцинкованной стали или нержавейки.

Из оцинкованной стали изготовляются как прямоугольные, так и круглые воздуховоды, причем для производства не требуется особо дорогостоящее оборудование. В большинстве случаев достаточно гибочного станка и устройства для изготовления круглых труб. Не считая мелкого ручного инструмента.

Расчет поперечного сечения воздуховода

Основная задача, которая возникает при расчете воздуховодов - это выбор поперечного сечения и формы изделия. Этот процесс проходит при проектировании системы как в специализированных компаниях, так и при самостоятельном изготовлении. Необходимо провести расчет диаметра воздуховода или сторон прямоугольника, выбрать оптимальное значение площади поперечного сечения.

Расчет поперечного сечения проводят двумя способами:

  • допустимых скоростей;
  • постоянной потери давления.

Метод допустимых скоростей проще для неспециалистов, поэтому рассмотрим в общих чертах его.

Расчет сечения воздуховодов методом допустимых скоростей

Расчет сечения воздуховода вентиляции методом допустимых скоростей базируется на нормированной максимальной скорости. Скорость выбирается для каждого типа помещения и участка воздуховода в зависимости от рекомендуемых значений. Для каждого типа здания существуют максимально допустимые скорости в магистральных воздуховодах и ответвлениях, выше которых использование системы затруднено из-за шума и сильных потерь давления.

Рис. 1 (Схема сети для расчета)

В любом случае, перед началом расчета необходимо составить план системы. Для начала необходимо рассчитать требуемое количество воздуха, которое нужно подать и удалить из помещения. На этом расчете будет базироваться дальнейшая работа.

Сам процесс расчета сечения методом допустимых скоростей упрощенно состоит из таких этапов:

  1. Создается схема воздуховодов, на которой отмечаются участки и расчетное количество воздуха, которое будет по ним транспортироваться. Лучше на ней же указать все решетки, диффузоры, изменения сечения, повороты и клапаны.
  2. По подобранной максимальной скорости и количеству воздуха рассчитывается сечение воздуховода, его диаметр или размер сторон прямоугольника.
  3. После того, как известны все параметры системы, можно подобрать вентилятор необходимой производительности и напора. Подбор вентилятора базируется на расчете падения давления в сети. Это существенно сложнее, чем просто подобрать сечение воздуховода на каждом участке. Этот вопрос мы рассмотрим в общих чертах. Так как иногда просто подбирают вентилятор с небольшим запасом.

Для расчета необходимо знать параметры максимальной скорости воздуха. Их берут из справочников и нормативной литературы. В таблице приведены значения для некоторых зданий и участков системы.

Нормативная скорость

Значения приблизительные, но позволяют создать систему с минимальным уровнем шума.

Рис, 2 (Номограмма круглого жестяного воздуховода)

Как использовать этих значения? Их необходимо подставить в формулу или использовать номограммы (схемы) для разных форм и типов воздуховодов.

Номограммы обычно даются в нормативной литературе или в инструкции и описании воздуховодов конкретного производителя. Например, такими схемами комплектуются все гибкие воздуховоды. Для труб из жести данные можно найти в документах и на сайте производителя.

В принципе, можно не использовать номограмму, а найти требуемую площадь сечения, исходя из скорости воздуха. А площади подобрать по диаметру или ширине и длине прямоугольного сечения.

Пример

Рассмотрим пример. На рисунке приведена номограмма для круглого воздуховода из жести. Номограмма полезна еще и тем, что на ней можно уточнить потери давления на участке воздуховода при заданной скорости. Эти данные потребуются в дальнейшем для подбора вентилятора.

Итак, какой воздуховод подобрать на участке сети (ответвлении) от решетки до магистрали, по которому будет прокачиваться 100 м³/ч? На номограмме находим пересечения заданного количества воздуха с линией максимальной скорости для ответвления 4 м/с. Также недалеко от этой точки находим ближайший (больший) диаметр. Это труба диаметром 100 мм.

Таким же образом находим сечение для каждого участка. Все подобрано. Теперь осталось провести подбор вентилятора и расчет воздуховодов и фасонных частей (если это необходимо для производства).

Подбор вентилятора

Составляющей частью метода допустимых скоростей является расчет потерь давления в сети воздуховодов для подбора вентилятора необходимой производительности и напора.

Потери давления на прямых участках

В принципе, требуемую производительность вентилятора можно узнать путем сложения необходимого количества воздуха для всех помещений здания и подбором подходящей модели в каталоге производителя. Но проблема в том, что максимальное количество воздуха, указанное в документации к вентилятору, он способен подать лишь без сети воздуховодов. А при подключении трубы его производительность будет падать в зависимости от потери давления в сети.

Для этого в документации каждому вентилятору дается диаграмма производительности в зависимости от падения давления в сети. А как же рассчитать это падение? Для этого необходимо определить:

  • падение давления на ровных участках воздуховодов;
  • потери на решетках, поворотах, тройниках и других фасонных элементах и препятствиях в сети (местных сопротивлениях).

Потери давления на участках воздуховодов рассчитываются по той же приведенной номограмме. От точки пересечения линии скорости движения воздуха в подобранном воздуховоде и его диаметра находим потери давления в паскалях на метр. Далее высчитываем полные потери давления на участке определенного диаметра умножением удельной потери на длину.

Для нашего примера с воздуховодом 100 мм и скоростью около 4 м/с потери давления будут составлять около 2 Па/м.

Потери давления на местных сопротивлениях

Расчет потерь давления на поворотах, изгибах, тройниках, изменения сечения и переходах существенно сложнее чем на прямых участках. Для такого на той же приведенной выше схеме указываются все элементы, которые могут препятствовать движению.

Рис 3 (Некоторые к. м. с.)

Далее необходимо для каждого такого местного сопротивления в нормативной литературе найти коэффициент местного сопротивления (к. м. с), который обозначается буквой ζ (дзетта). Потеря давления на каждом таком элементе находится по формуле:

Pм. с.=ζ×Pд

где Pд=V2×ρ/2 - динамическое давление (V - скорость, ρ - плотность воздуха).

Например, если на уже рассматриваемом нами участке диаметром 100 мм со скоростью движения воздуха 4 м/с будет находиться круглый отвод (поворот 90 градусов) к. м. с. которого 0,21 (по таблице), потери давления на нем будут составлять

  • Pм. с.=0,21 · 42·(1,2/2) = 2,0 Па.

Средняя плотность воздуха при температуре 20 градусов составляет 1,2 кг/м3.

Рис 4 (Пример таблицы)

По найденным параметрам подбирается вентилятор.

Расчет материала для воздуховодов и фасонных элементов

Расчет площади воздуховодов и фасонных изделий необходим при их производстве. Он делается для того, чтобы определить количество материала (жести) для изготовления участка трубы или какого-либо фасонного элемента.

Для расчета необходимо использовать лишь формулы из геометрии. Например, для круглого воздуховода находим диаметр окружности, умножением которого на длину участка получим площадь наружной поверхности трубы.

Для изготовления 1 метра трубопровода диаметром 100 мм потребуется: π·D·1=3.14·0.1·1=0.314 м² жести. Также необходимо учитывать от 10-15 мм запаса на соединение. Также рассчитывается и прямоугольный воздуховод.

Расчет фасонных частей воздуховодов осложнен тем, что для него не существует определенных формул, как для круглого или прямоугольного сечения. Для каждого элемента необходимо проводить раскрой и рассчитывать необходимое количество материалов. Это делается на производстве или в жестяных мастерских.

Теперь, зная из состоит система вентиляции, мы можем приступить к ее комплектации. В этом разделе мы расскажем о том, как рассчитать приточную вентиляцию для объекта площадью до 300-400 м² — квартиры, небольшого офиса или коттеджа. Естественная вытяжная вентиляция на таких объектах обычно уже установлена на этапе строительства, поэтому рассчитывать ее не требуется. Следует отметить, что в квартирах и коттеджах вытяжная вентиляция обычно проектируется из расчета однократного воздухообмена, в то время как приточная обеспечивает, в среднем, двукратный воздухообмен. Это не является проблемой, поскольку часть приточного воздуха будет удаляться через неплотности в окнах и дверях, не создавая избыточной нагрузки на вытяжную систему. В нашей практике мы никогда не сталкивались с требованием службы эксплуатации многоквартирного здания ограничить производительность приточной системы вентиляции (в то же время установка вытяжных вентиляторов в каналы вытяжной вентиляции часто бывает запрещена). Если же вы не хотите разбираться в методике расчета и формулах, то можете воспользоваться , который выполнит все необходимые расчеты.

Производительность по воздуху

Расчет системы вентиляции начинается с определения производительности по воздуху (воздухообмена), измеряемой в кубометрах в час. Для расчетов нам потребуется план объекта, где указаны наименования (назначения) и площади всех помещений.

Подавать свежий воздух требуется только в те помещения, где люди могут находиться длительное время: спальни, гостиные, кабинеты и т. п. В коридоры воздух не подается, а из кухни и санузлов удаляется через вытяжные каналы. Таким образом, схема движения воздушных потоков будет выглядеть следующим образом: свежий воздух подается в жилые помещения, оттуда он (уже частично загрязненный) попадает в коридор, из коридора — в санузлы и на кухню, откуда удаляется через вытяжную вентиляцию, унося с собой неприятные запахи и загрязнители. Такая схема движения воздуха обеспечивает воздушный подпор «грязных» помещений, исключая возможность распространения неприятных запахов по квартире или коттеджу.

Для каждого жилого помещения определяется количество подаваемого воздуха. Расчет обычно ведется в соответствии со СНиП 41-01-2003 и МГСН 3.01.01 . Поскольку СНиП задает более жесткие требования, то в расчетах мы будем ориентироваться на этот документ. В нем говорится, что для жилых помещений без естественного проветривания (то есть там, где окна не открывают) расход воздуха должен составлять не менее 60 м³/ч на человека. Для спален иногда используют меньшее значение — 30 м³/ч на человека, поскольку в состоянии сна человек потребляет меньше кислорода (это допустимо по МГСН, а также по СНиП для помещений с естественным проветриванием). При расчете учитываются только люди, находящиеся в помещении длительное время. Например, если у вас в гостиной пару раз в году собирается большая компания, то увеличивать производительность вентиляции из-за них не нужно. Если же вы хотите, чтобы гости чувствовали себя комфортно, можно установить VAV-систему, которая позволяет регулировать расход воздуха раздельно в каждом помещении. С такой системой вы сможете увеличить воздухообмен в гостиной за счет его снижения в спальне и других помещениях.

После расчета воздухообмена по людям нам нужно рассчитать воздухообмен по кратности (этот параметр показывает, сколько раз в течение одного часа в помещении происходит полная смена воздуха). Чтобы воздух в помещении не застаивался, нужно обеспечить хотя бы однократный воздухообмен.

Таким образом, для определения требуемого расхода воздуха нам нужно рассчитать два значения воздухообмена: по количеству людей и по кратности и, после чего выбрать большее из этих двух значений:

  1. Расчет воздухообмена по количеству людей:

    L = N * Lnorm , где

    L

    N — количество людей;

    Lnorm — норма расхода воздуха на одного человека:

    • в состоянии покоя (сна) — 30 м³/ч;
    • типовое значение (по СНиП) — 60 м³/ч;
  2. Расчет воздухообмена по кратности:

    L = n * S * H , где

    L — требуемая производительность приточной вентиляции, м³/ч;

    n — нормируемая кратность воздухообмена:

    для жилых помещений - от 1 до 2, для офисов - от 2 до 3;

    S — площадь помещения, м²;

    H — высота помещения, м;

Рассчитав необходимый воздухообмен для каждого обслуживаемого помещения, и сложив полученные значения, мы узнаем общую производительность системы вентиляции. Для справки типовые значения производительности вентиляционных систем:

  • Для отдельных комнат и квартир — от 100 до 500 м³/ч;
  • Для коттеджей — от 500 до 2000 м³/ч;
  • Для офисов — от 1000 до 10000 м³/ч.
  • Расчет воздухораспределительной сети

    После определения производительности вентиляции можно переходить к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов), дроссель-клапанов и распределителей воздуха (решеток или диффузоров). Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Схему составляют таким образом, чтобы при минимальной общей длине трассы система вентиляции могла подавать расчетное количество воздуха во все обслуживаемые помещения. Далее по этой схеме рассчитывают размеры воздуховодов и подбирают воздухораспределители.

    Расчет размеров воздуховодов

    Для расчета размеров (площади сечения) воздуховодов нам нужно знать объем воздуха, проходящий через воздуховод в единицу времени, а также максимально допустимую скорость воздуха в канале. При увеличении скорости воздуха размеры воздуховодов уменьшаются, но уровень шума и сопротивление сети возрастают. На практике для квартир и коттеджей скорость воздуха в воздуховодах ограничивают на уровне 3-4 м/с, поскольку при более высоких скоростях воздуха шум от его движения в воздуховодах и распределителях может стать слишком заметным.

    Следует также учитывать, что использовать «тихие» низкоскоростные воздуховоды большого сечения не всегда возможно, поскольку их сложно разместить в запотолочном пространстве. Снизить высоту запотолочного пространства позволяет применение прямоугольных воздуховодов, которые при одинаковой площади сечения имеют меньшую высоту, чем круглые (например, круглый воздуховод диаметром 160 мм имеет такую же площадь сечения, как и прямоугольный размером 200×100 мм). В тоже время монтировать сеть из круглых гибких воздуховодов проще и быстрее.

    Итак, расчетная площадь сечения воздуховода определяется по формуле:

    Sс = L * 2,778 / V , где

    — расчетная площадь сечения воздуховода, см²;

    L — расход воздуха через воздуховод, м³/ч;

    V — скорость воздуха в воздуховоде, м/с;

    2,778 — коэффициент для согласования различных размерностей (часы и секунды, метры и сантиметры).

    Итоговый результат мы получаем в квадратных сантиметрах, поскольку в таких единицах измерения он более удобен для восприятия.

    Фактическая площадь сечения воздуховода определяется по формуле:

    S = π * D² / 400 — для круглых воздуховодов,

    S = A * B / 100 — для прямоугольных воздуховодов, где

    S — фактическая площадь сечения воздуховода, см²;

    D — диаметр круглого воздуховода, мм;

    A и B — ширина и высота прямоугольного воздуховода, мм.

    В таблице приведены данные по расходу воздуха в круглых и прямоугольных воздуховодах при разных скоростях движения воздуха.

    Таблица 1. Расход воздуха в воздуховодах

    Параметры воздуховодов Расход воздуха (м³/ч)
    при скорости воздуха:
    Диаметр
    круглого
    воздуховода
    Размеры
    прямоугольного
    воздуховода
    Площадь
    сечения
    воздуховода
    2 м/с 3 м/с 4 м/с 5 м/с 6 м/с
    80×90 мм 72 см² 52 78 104 130 156
    Ø 100 мм 63×125 мм 79 см² 57 85 113 142 170
    63×140 мм 88 см² 63 95 127 159 190
    Ø 110 мм 90×100 мм 90 см² 65 97 130 162 194
    80×140 мм 112 см² 81 121 161 202 242
    Ø 125 мм 100×125 мм 125 см² 90 135 180 225 270
    100×140 мм 140 см² 101 151 202 252 302
    Ø 140 мм 125×125 мм 156 см² 112 169 225 281 337
    90×200 мм 180 см² 130 194 259 324 389
    Ø 160 мм 100×200 мм 200 см² 144 216 288 360 432
    90×250 мм 225 см² 162 243 324 405 486
    Ø 180 мм 160×160 мм 256 см² 184 276 369 461 553
    90×315 мм 283 см² 204 306 408 510 612
    Ø 200 мм 100×315 мм 315 см² 227 340 454 567 680
    100×355 мм 355 см² 256 383 511 639 767
    Ø 225 мм 160×250 мм 400 см² 288 432 576 720 864
    125×355 мм 443 см² 319 479 639 799 958
    Ø 250 мм 125×400 мм 500 см² 360 540 720 900 1080
    200×315 мм 630 см² 454 680 907 1134 1361
    Ø 300 мм 200×355 мм 710 см² 511 767 1022 1278 1533
    160×450 мм 720 см² 518 778 1037 1296 1555
    Ø 315 мм 250×315 мм 787 см² 567 850 1134 1417 1701
    250×355 мм 887 см² 639 958 1278 1597 1917
    Ø 350 мм 200×500 мм 1000 см² 720 1080 1440 1800 2160
    250×450 мм 1125 см² 810 1215 1620 2025 2430
    Ø 400 мм 250×500 мм 1250 см² 900 1350 1800 2250 2700

    Расчет размеров воздуховода производится отдельно для каждой ветки, начиная с магистрального канала, к которому подключается вентустановка. Отметим, что скорость воздуха на ее выходе может достигать 6-8 м/с, поскольку размеры присоединительного фланца вентустановки ограничены размером ее корпуса (шум, возникающий внутри нее, гасится шумоглушителем). Для уменьшения скорости воздуха и снижения уровня шума размеры магистрального воздуховода часто выбирают больше размеров фланца вентустановки. В этом случае подключение магистрального воздуховода к вентустановке производится через переходник.

    В бытовых системах вентиляции обычно используются круглые воздуховоды диаметром от 100 до 250 мм или прямоугольные эквивалентного сечения.

    Выбор воздухораспределителей

    Зная расход воздуха можно подобрать по каталогу воздухораспределители с учетом соотношения их размеров и уровня шума (площадь сечения воздухораспределителя, как правило, в 1,5-2 раза больше площади сечения воздуховода). Для примера рассмотрим параметры популярных воздухораспределительных решеток Арктос серий АМН, АДН, АМР, АДР:



    Выбор приточной установки

    Для выбора приточной установки нам потребуются значения трех параметров: общей производительности, мощности калорифера и сопротивления воздухопроводной сети. Производительность и мощность калорифера мы уже рассчитали. Сопротивление сети можно найти с помощью или, при ручном расчете, принять равным типовому значению (см. раздел ).

    Для выбора подходящей модели нам нужно отобрать вентустановки, максимальная производительность которых несколько больше расчетного значения. После этого по вентиляционной характеристике мы определяем производительность системы при заданном сопротивлении сети. Если полученное значение будет несколько выше требуемой производительности вентиляционной системы, то выбранная модель нам подходит.

    Для примера проверим, подойдет ли вентустановка с приведенной на рисунке вентхарактеристикой для коттеджа площадью 200 м².


    Расчетное значение производительности — 450 м³/ч. Сопротивление сети примем равным 120 Па. Для определения фактической производительности мы должны провести горизонтальную линию от значения 120 Па, после чего от точки ее пересечения с графиком провести вниз вертикальную линию. Точка пересечения этой линии с осью «Производительность» и даст нам искомое значение — около 480 м³/ч, что немного больше расчетного значения. Таким образом, эта модель нам подходит.

    Заметим, что многие современные вентиляторы имеют пологие вентхарактеристики. Это означает, что возможные ошибки в определении сопротивления сети почти не влияют на фактическую производительность системы вентиляции. Если бы мы в нашем примере ошиблись при определении сопротивления воздухопроводной сети на 50 Па (то есть фактическое сопротивление сети было бы не 120, а 180 Па), производительность системы упала бы всего на 20 м³/ч до 460 м³/ч, что не повлияло бы на результат нашего выбора.

    После выбора приточной установки (или вентилятора, если используется наборная система) может оказаться, что ее фактическая производительность заметно больше расчетной, а предыдущая модель приточной установки не подходит, поскольку ее производительности недостаточно. В этом случае у нас есть несколько вариантов:

    1. Оставить все как есть, при этом фактическая производительность вентиляции будет выше расчетной. Это приведет к повышенному расходу энергии, затрачиваемой на нагрев воздуха в холодное время года.
    2. «Задушить» вентустановку с помощью балансировочных дроссель-клапанов, закрывая их до тех пор, пока расход воздуха в каждом помещении не снизится до расчетного уровня. Это также приведет к перерасходу энергии (хотя и не такому большому, как в первом варианте), поскольку вентилятор будет работать с избыточной нагрузкой, преодолевая повышенное сопротивление сети.
    3. Не включать максимальную скорость. Это поможет в том случае, если вентустановка имеет 5-8 скоростей вентилятора (или плавную регулировку скорости). Однако большинство бюджетных вентустановок имеет только 3-х ступенчатую регулировку скорости, что, скорее всего, не позволит точно подобрать нужную производительность.
    4. Снизить максимальную производительность приточной установки точно до заданного уровня. Это возможно в том случае, если автоматика вентустановки позволяет настраивать максимальную скорость вращения вентилятора.

    Нужно ли ориентироваться на СНиП?

    Во всех расчетах, которые мы проводили, использовались рекомендации СНиП и МГСН. Эта нормативная документация позволяет определить минимально допустимую производительность вентиляции, обеспечивающую комфортное пребывание людей в помещении. Другими словами требования СНиП направлены в первую очередь на минимизацию стоимости системы вентиляции и затрат на ее эксплуатацию, что актуально при проектировании вентсистем для административных и общественных зданий.

    В квартирах и коттеджах ситуация иная, ведь вы проектируете вентиляцию для себя, а не для усредненного жителя и вас никто не заставляет придерживаться рекомендаций СНиП. По этой причине производительность системы может быть как выше расчетного значения (для большего комфорта), так и ниже (для уменьшения энергопотребления и стоимости системы). К тому же субъективное ощущение комфорта у всех разное: кому-то достаточно 30-40 м³/ч на человека, а для кого-то будет мало и 60 м³/ч.

    Однако если вы не знаете, какой воздухообмен вам нужен для комфортного самочувствия, лучше придерживаться рекомендаций СНиП. Поскольку современные приточные установки позволяют регулировать производительность с пульта управления, вы сможете найти компромисс между комфортом и экономией уже в процессе эксплуатации системы вентиляции.

    Уровень шума системы вентиляции

    О том, как сделать «тихую» систему вентиляции, которая не будет мешать спать по ночам, рассказывается в разделе .

    Проектирование системы вентиляции

    Для точного расчета параметров системы вентиляции и разработки проекта обращайтесь в . Вы также можете рассчитать с помощью калькулятора ориентировочную .