Что такое экструдированная клинкерная плитка. Что такое клинкер? Распространенные вопросы

Клинкерная плитка – облицовочный материал, который уже давно активно используется в строительном деле. Ещё в начале XIX века материал использовался для прокладки дорог в Голландии, сразу же после чего его начали применять в России и Западной Европе.

Как утверждают историки, технология производства клинкерной плитки берёт своё начало ещё с XV века, когда люди заметили, что во время обжига глиняных брусков они приобретают совсем другие свойства (свойства керамогранита).

Печи, в которых производился обжиг, состояли только из одного входа и небольшого помещения. Внутрь него складывались глиняные бруски разных форм, после чего вход закладывался на несколько дней. Кирпич внутри под воздействием высокой температуры обретал нужные физические свойства.

Производят клинкерную плитку в основном из натурального материала – глины. В качестве разнообразия цветовой гаммы применяют естественные красители. Глина для обжига должна отличаться высоким уровнем тугоплавкости, и иметь минимальное количество разных примесей.

Сегодня залежи высококачественного клинкера, пригодного для изготовления клинкерного облицовочного материала, имеются в Польше, Германии, Испании, Голландии и др. странах.

Технология производства клинкерной плитки

В нынешнее время технология производства клинкерной плитки не имеет принципиальных отличий от технологии производства в средневековой Европе. Хотя специалисты в данной области выделяют 2 типа производства:

  • экструдирование
  • полусухое прессование

Клинкерная плитка проходит процесс обжига при высоких температурах. Если, к примеру, при обжиге обычных глиняных изделий материал поддаётся воздействию порядка 800-900 о С, то в клинкерных печах рабочая температура составляет 1100-1400 о С.

Благодаря такому температурному режиму материал изменяет своё физическое состояние, становясь более
прочным. При этом расход энергоносителей в 4 раза превышает потребность, нежели при обработке глиняных изделий обычным способом.

Экструдиционный метод производства подразумевает использование специального оборудования – экструдера. Устройство представлено в виде шнековой мясорубки, в которую подаётся влажная пластичная глина. После её измельчения выполняется формовка с помощью вакуумного пресса. Данная заготовка после просушки отправляется в печь для обжига. Клинкерный материал после экструдирования отличается высокой плотностью, прочностью, стойкостью к истиранию, механическим и химическим воздействиям.

Метод полусухого прессования также подразумевает процесс прессования на специальном оборудовании. Однако в отличие от экструдирования, исходные материалы помещаются в печь для обжига без предварительной сушки. В результате такого метода производства клинкерное изделие имеет небольшую плотность, в силу чего существенно ослабляет свою прочность.

Метод полусухого прессования нужен для того, чтобы получать клинкерные изделия с низкой теплопроводностью. А в некоторых случаях такие изделия ценятся намного больше, нежели, к примеру, стойкость к механическим или химическим воздействиям.

Оборудование для производства клинкерной плитки

Для производства качественной клинкерной продукции используется специальное оборудование. В процессе технологической обработки, глина проходит через экструдер, специальное устройство для прессования и создания необходимой формы (станки бывают ленточными, вакуумными, ротационными, рычажными), камеры предварительной сушки и печь для обжига.

Пресс-формы для формировки, в которые помещается влажная пластичная глина, имеют матричный слой, обеспечивающий максимально возможный уровень герметичности и теплоизоляции материалу на выходе.

Основным оборудованием для производства клинкерной плитки, естественно, считается печь обжига. Такое помещение представляет собой своеобразный тоннель порядка 150 м длиной. В нём имеются источники нагрева в виде подачи открытого огня.

В специальных вагонетках, которые перемещаются по печи с довольно низкой скоростью, подаются клинкерные элементы. Таким образом, происходит постепенное нагревание и обжиг глины. Такие печи работают в непрерывном режиме, что позволяет поддать обжигу большое количество изделий.


Производство клинкера не требует значительных энергозатрат. Высокая стоимость готового материала может быть оправдана лишь затратами на доставку материала (глины) из месторождений. Но цена с лихвой компенсируется за счёт эксплуатационных качеств материала. Именно этот показатель (цена-качество) делает применение клинкера очень популярным в самых разных направлениях строительной индустрии.

Технические и эксплуатационные характеристики клинкера

С помощью высокотемпературной обработки клинкерная плитка получает большинство своих положительных характеристик. Материал практически не имеет пор, поэтому не пропускает влагу и обеспечивает высокую гидроизоляцию помещению. В стенах не накапливается плесень и бактерии, поэтому срок эксплуатации таких стен намного больше обычных.

Клинкерная плитка невосприимчива к щелочам и кислотам, поэтому часто используется для облицовки жилых домов. Такой материал морозостоек, из-за чего его часто применяют при возведении фасадов зданий в регионах с пониженным температурным режимом (клинкер способен выдерживать до 50-80 морозных сезонов). В сравнении с обычной кирпичной кладкой, на которой уже после 1-2 зимних периодов выступают светлые следы, клинкерная плитка сохраняет свой первоначальный внешний вид долгое время.

Клинкер отличается целым рядом преимуществ:

  • низкое поглощение влаги;
  • экологичность;
  • большое разнообразие цветов;
  • высокая прочность и морозостойкость;
  • неограниченный срок службы.

Данный облицовочный материал очень часто используют вместе с теплоизоляцией, получая идеальное покрытие для фасадов зданий. Такие панели называются термопанелями, и в настоящее время уже имеют большую популярность.

Облицовка клинкерной плиткой - известный способ облагородить камин или печь. Такая плитка имеет множество фактур, цветов, оттенков. Особой популярностью пользуется плитка, имитирующая кирпич. Она отличается большой прочностью и сроком эксплуатации.

Не все виды клинкерной плитки подходят для облицовки камина. Выбирая конкретный материал, нужно учитывать ряд нюансов.

Что учитывается при выборе клинкера?

Основной фактор, на который обращает внимание большинство - это внешний вид. С точки зрения профессионала, этот фактор не является основным. В первую очередь нужно смотреть на коэффициент расширения. Для того чтобы плитка оставалась на месте на протяжении десятилетий нужно, чтобы при нагревании она расширялась подобно каминным стенкам.

Способ изготовления

Коэффициент расширения клинкера напрямую зависит от метода производства. Так, классическая плитка, используемая в облицовке фасадов, отличается высокой плотностью и водостойкостью. Эти качества делают ее идеальной для использования на морозе, однако исключают расширение при нагревании.

Плотная клинкерная плитка изготавливается с помощью способа экструзии. Вначале глиняная смесь проходит через специализированные формовочные сопла, после чего полученные полуфабрикаты подсушиваются и пропекаются под воздействием больших температур.

Еще один способ изготовления плитки - полусухая формовка. Глиняная паста спрессовывается в специальных формах, после чего пропекается при высокой температуре. Просушка при данном способе исключается. Полученная плитка более пористая, обладает меньшей морозостойкостью. Ее не рекомендуется использовать для облицовки фасадов, однако она идеально подходит для декоративной отделки каминов. Коэффициент расширения данной плитки схож с кирпичом.

Обратная сторона экструдированного и формованного клинкера различаются рельефом. На формованную клинкерную плитку нанесена рельефная сетка. На экструдированном клинкере легко различить небольшие продольные борозды.

Пример клинкерной плитки для каминов — .

Какой клинкер использовать для отделки печей и каминов?

Многие европейские фабрики изготавливают исключительно экструзивный клинкер. На некоторых заводах формовочный клинкер производится ручным способом. При его изготовлении используется стандартная полусухая формовка, благодаря чему он приобретает жаростойкие свойства. Благодаря формовке, проводимой вручную, каждая отдельная плитка приобретает свой неповторимый внешний вид и рельеф.

Клинкерная плитка используется исключительно для наружной отделки. Если необходимо обработать внутренность камина, для этого подходит шамотный кирпич или иной огнеупорный материал.

Если камин подразумевает качественную термоизоляцию и жар не проходит сквозь стенки, для декоративной отделки можно воспользоваться любой клинкерной плиткой.

Особенности отделки клинкером

Камин, облицованный клинкерной плиткой, будет слабее нагреваться и дольше остывать. Это происходит из-за особенностей материала: небольшая теплопроводность препятствует выходу тепла наружу, большая теплоемкость препятствует остыванию плитки после того, как камин затухнет.

Эта особенность важна при постоянном использовании камина. Если он служит для декоративных целей, это свойство не критично.

Обращайтесь к нам

Мы предлагаем различные виды клинкерной плитки для облицовки каминов и печей. У наших специалистов вы можете получить подробную консультацию по техническим характеристикам материала. Для получения консультации достаточно оставить нам свой телефонный номер, и вскоре вам перезвонят.

Инвестор при принятии решения о покупке керамической плитки на фасад сталкивается с вопросом: какую плитку выбрать? Дилемма состоит в том, предпочесть одни лишь эстетические аспекты или учесть также и технические. На рынке существует два основных типа керамической плитки: экструдированные и прессованные . Они различаются как по способу производства, так и по функциям, которые имеют непосредственное влияние на стоимость и эффективность использования. Некоторые из них имеют, например, меньшие допуски, другие большую устойчивость к неблагоприятным погодным условиям. Предоставляя эту информацию, мы надеемся, что инвестор на их основе будет иметь возможность принимать обоснованные решения, учитывая не только собственные предпочтения и ожидания, но и технические аспекты для того, чтобы насладиться конечным результатом в виде красивых и прочных фасадов на протяжении многих лет. Керамическая плитка может быть получена с использованием двух технологий:

  1. Технология экструдирования. Это традиционная технология используется в производстве клинкера, кирпича и булыжника. Планшеты изготовлены из пластических масс с содержанием влаги от 15%. Часть глины выдавливают из пресса под огромным давлением, а затем разрезают на отдельные продукты.
  2. Сухая технология прессования. Клей в виде порошковой смеси с содержанием воды 4-5% заполнен в пресс-форму, а затем прессуют под высоким давлением. Это технология аналогична используемой в производстве керамогранита, цементно-песчаной плитки.

Это два разных режима производства позволяют получать продукцию, которая сочетается только в названии - керамическая плитка. Однако они имеют различную внутреннюю структуру, физико-химические свойства, и таким образом, стойкость и долговечность. Они отличаются по характеристикам, которые определяют прочность связи с плиточным клеем и прочих связей, особенно с водой. Очень отличается и их эстетика.

Прочность соединения с подложкой

Главная монтажная плитка (сухопрессованная) прижимается сухой стеклянной и гладкой поверхностью без каких-либо открытых микропор. Клей не имеет возможности проникать глубоко в структуру пластины. Это, безусловно, ограничивает возможности связи с клеевым раствором и прочного соединения трудно получить. Особенно, когда плитки используются на открытом воздухе: не только в мороз зимой, но и летом - солнце и большие суточные колебания температуры могут привести к отделению плитки от подложки (несущей стены).

Поверхность прессованной плитки в увеличении

В случае экструдированных плиток они имеют пористую и шероховатую структуру, которая обеспечивает большую контактную поверхность адгезивного строительного раствора. Клей легко и глубоко проникает в микропоры открытой системы, что приводит к особой прочности приклеенной плитки.

Поверхность екструдированной плитки в увеличении

Водопоглощение, морозостойкость

Сухие прессованные плитки имеют низкое водопоглощение, поэтому может показаться, что они более устойчивы и прочны. Реальность совсем иная. Стоит рассмотреть внутреннюю структуру из двух материалов, имеющих непосредственное влияние на производительность и удобство использования плиты. В технологии производства сухого сжатого тела плитки со структурой сжатых хаотических материальных частиц, между которыми микропоры закрыты при очень тонких капиллярных каналах. Это приводит к низкой абсорбции воды, а также крайне медленно вытекает вода. Предполагается, что вода не попала внутрь таких продуктов. Однако это предположение является чисто теоретическим. Вода, оставшаяся в плитке, из-за закрытой структуры и уплотненного материала не может быть выведена и это приведет к расширению при замерзании на морозе. Следовательно, это может привести к повреждению плитки. Дополнительные риски вывода влаги из приклеенной плитки. Плиты сухого прессования не имеют возможности, чтобы вывести воду за пределами подложки. Вода частично входит в плитку и оставшись под ней, может ослабить связь с подложкой, несущим каркасом.

Структура и поведение воды в пресованной плитке

Структура и поведение воды в экструдированных плитках

Внутренняя структура плитки, полученная по технологии экструдирования, совершенно иная. Во время производственного процесса экструдирования микроструктура не повреждена и сохраняет естественный, однородный характер. Сеть взаимосвязанных капиллярных каналов делает возможным быстро выводить наружу влагу, они имеют меньшую впитывающую способность, чем полусухого прессования плитки, но вода легко поступает обратно в окружающую среду. Микропористая структура делает материал устойчивым к замораживанию воды, оставшейся в плитке. Кроме того, из-за ее структуры, плитка, изготовлена по технологии экструзии, легко избавляется от воды между плиткой и слоем клея, что предотвращает возможность ее накопления в зоне плитки. Таким образом, экструдированные плитки имеют более высокое сцепления с основой и соответственно менее вероятен отрыв плитки от основания. Поглощение воды из-за внутренней структуры меньше, плитки более долговечны и более устойчивы к экстремальным погодным условиям.

Структура и поведение воды в экструдированной плитке

Эстетика

Как уже упоминалось эстетика плиток прессованных и экструдированных совершенно иная. Конечно, нет возможности сказать, какая из них лучше, потому что обе группы находят своих сторонников и противников. Для некоторых гладкая поверхность прессованных плиток имеет пластиковый искусственный вид, для других - поверхность слишком «строгая». Прессованные продукты произведены в формах, так что структура модели повторяема, их поверхность хорошо воспроизводима. Они характеризуются большей точностью, чем экструдированных изделий, имеют меньшие допуски и цвет. Поверхность очень гладкая, часто покрыта ангобом, следовательно, утверждать, что они являются искусственными, пластиковыми можно с некоторой натяжкой и только размер напоминает кирпич. Прессованные пластины имеют толщину 6-7 мм и, следовательно, фугой (заполнителем швов) заполняется небольшое пространство между плиткой и основанием, что уменьшает водонепроницаемость стены. Структура таких соединений в прессованных плитках является гладкой и не похожа на швы, используемые в кирпичном фасаде.

При приклеивании прессованных плиток, плитка не может быть сильно нажата, чтобы создать успешную имитации кирпичной кладки. Тонкий раствор также менее прочный и, в результате ветра из-за подсоса воздуха, может треснуть и рассыпатся.

Экструдированные плитки изготовлены точно так же, как и клинкерные кирпичи, из того же сырья и по той же технологии. Так что поверхность выглядит аналогично поверхности традиционных продуктов из клинкера. Они не такие гладкие как прессованные плитки, они также имеют более высокую морозоустойчивость. Они настолько совершенны, что после облицовки фасада никто не может сказать, был он облицован плиткой или кирпичом. Диапазон продукции, производимой в технологии экструдирования - есть богатство природных цветов и поверхностных структур, как у клинкерного кирпича. Часто производители предлагают те же или аналогичные цвета плитки и кирпича, необходимые для завершения сопутствующих элементов, таких как фасады, дымоходы, заборы и ландшафтный дизайн. В связи с тем, что экструдированные плитки производятся толщиной 9-16 мм, затирки они могут использовать те же, что и для заделки швов для кирпича, следовательно, их размер частиц и структур идентичны поверхности растворов для каменной кладки.

Мы надеемся, что на основе приведенной выше информации, инвестор рассматривая технические и эстетические аспекты, сможет принять обоснованные решения и иметь облицованные стены с беспроблемной эксплуатацией.

Обжиг - завершающая технологическая операция производства клинкера. В процессе обжига из сырьевой смеси определенного химического состава получают клинкер, состоящий из четырех основных клинкерных минералов.
В состав клинкерных минералов входит каждый из исходных компонентов сырьевой смеси. Например, трехкальциевый силикат, основной клинкерный минерал, образуется из трех молекул СаО - окисла минерала известняка и одной молекулы SiО2 - окисла минерала глины. Аналогично получаются и другие три клинкерных минерала - двухкальциевый силикат, трехкальциевый алюминат и четырехкальциевый алюмоферрит. Таким образом, для образования клинкера минералы одного сырьевого компонента - известняка и минералы второго компонента - глины должны химически прореагировать между собой.
В обычных условиях компоненты сырьевой смеси - известняк, глина и др. инертны, т. е. они не вступают в реакцию один с другим. При нагревании они становятся активными и начинают взаимно проявлять реакционную способность. Объясняется это тем, что с повышением температуры энергия движущихся молекул твердых веществ становится столь значительной, что между ними возможен взаимный обмен молекулами и атомами с образованием нового соединения. Образование нового вещества в результате реакции двух или нескольких твердых веществ называют реакцией в твердых фазах.
Однако скорость химической реакции еще более возрастает, если часть материалов расплавляется, образуя жидкую фазу. Такое частичное плавление получило название спекания, а материал - спекшимся. Портландцементный клинкер обжигают до спекания. Спекание, т. е. образование жидкой фазы, необходимо для более полного химического усвоения окиси кальция СаО кремнеземом SiО2 и получения при этом трехкальциевого силиката.
Частичное плавление клинкерных сырьевых материалов начинается с температуры 1300° С. Для ускорения реакции образования трехкальциевого силиката температуру обжига клинкера увеличивают до 1450° С.
В качестве установок для получения клинкера могут быть использованы различные по своей конструкции и принципу действия тепловые агрегаты. Однако в основном для этой цели применяют вращающиеся печи, в них получают примерно 95% клинкера от общего выпуска, 3,5% клинкера получают в шахтных печах и оставшиеся 1,5% - в тепловых агрегатах других систем - спекательных решетках, реакторах для обжига клинкера во взвешенном состоянии или в кипящем слое. Вращающиеся печи являются основным тепловым агрегатом как при мокром, так и при сухом способах производства клинкера.
Обжигательным аппаратом вращающейся печи является барабан, футерованный внутри огнеупорными материалами. Барабан установлен с наклоном на роликовые опоры.
С поднятого конца в барабан поступает жидкий шлам или гранулы. В результате вращения барабана шлам перемещается к опущенному концу. Топливо подается в барабан и сгорает со стороны опущенного конца. Образующиеся при этом раскаленные дымовые газы продвигаются навстречу обжигаемому материалу и нагревают его. Обожженный материал в виде клинкера выходит из барабана. В качестве топлива для вращающейся печи применяют угольную пыль, мазут или природный газ. Твердое и жидкое топливо подают в печь в распыленном состоянии. Воздух, необходимый для сгорания топлива, вводят в печь вместе с топливом, а также дополнительно подают из холодильника печи. В холодильнике он подогревается теплом раскаленного клинкера, охлаждая последний при этом. Воздух, который вводится в печь вместе с топливом, называется первичным, а получаемый из холодильника печи - вторичным.
Образовавшиеся при сгорании топлива раскаленные газы продвигаются навстречу обжигаемому материалу, нагревают его, а сами охлаждаются. В результате температура материалов в барабане по мере их движения все время возрастает, а температура газов - снижается.
Ломаный характер кривой температуры материала показывает, что при нагревании сырьевой смеси в ней происходят различные физико-химические процессы, в одних случаях тормозящие нагревание (пологие участки), а в других - способствующие резкому нагреванию (крутые участки). Сущность этих процессов состоит в следующем.
Сырьевой шлам, имеющий температуру окружающего воздуха, попадая в печь, подвергается резкому воздействию высокой температуры отходящих дымовых газов и нагревается. Температура отходящих газов при этом снижается примерно от 800-1000 до 160-250° С.
При нагревании шлам вначале разжижается, а затем загустевает и при потере значительного количества воды превращается в крупные комья, которые при дальнейшем нагревании превращаются в зерна - гранулы.
Процесс испарения из шлама механически примешанной к нему воды (сушка шлама) длится примерно до температуры 200° С, так как влага, содержащаяся в тонких порах и капиллярах материала, испаряется медленно.
По характеру процессов, протекающих в шламе при температурах до 200° С, эта зона печи называется зоной испарения.
По мере дальнейшего продвижения материал попадает в область более высоких температур и в сырьевой смеси начинают происходить химические процессы: при температуре свыше 200-300° С выгорают органические примеси и теряется вода, содержащаяся в минералах глины. Потеря минералами глины химически связанной воды (дегидратация) приводит к полной потере глиной ее связующих свойств и куски шлама рассыпаются в порошок. Этот процесс длится до температур примерно 600-700° С.
По существу процессов, протекающих в интервале температур от 200 до 700° С, эта зона печи носит название зоны подогрева.
В результате пребывания сырьевой смеси в области такой температуры образуется окись кальция, поэтому эта зона печи (до температуры 1200°) получила название зоны кальцинирования.
Температура материала в этой зоне возрастает сравнительно медленно. Это объясняется тем, что тепло дымовых газов расходуется в основном на разложение СаСО3: для разложения 1 кг СаСО3 на СаО и С02 требуется затратить 425 ккал тепла.
Появление в сырьевой смеси окиси кальция и наличие высокой температуры обусловливает начало химического взаимодействия находящихся в глине окислов кремния, алюминия и железа с окисью кальция. Это взаимодействие протекает между окислами в твердом состоянии (в твердых фазах).
Реакции в твердых фазах развиваются в области температур 1200-1300° С. Эти реакции экзотермичны, т. е. протекают с выделением тепла, почему эта зона печи получила название зоны экзотермических реакций.
Образование трехкальциевого силиката происходит уже на следующем участке печи в области наибольших температур, называемом зоной спекания.
В зоне спекания наиболее легкоплавкие минералы расплавляются. В образовавшейся жидкой фазе происходит частичное растворение 2CaO-Si02 и насыщение его известью до 3CaO-Si02.
Трехкальциевый силикат обладает значительно меньшей способностью растворяться в расплаве, чем двухкальциевый силикат. Поэтому, как только произошло его образование, расплав становится пересыщенным по отношению к этому минералу и трехкальциевый силикат выпадает из расплава в виде мельчайших твердых кристаллов, которые затем при данных условиях способны увеличиваться в размерах.
Растворение 2CaO-Si02 и поглощение им извести происходит не сразу во всей массе смеси, а отдельными ее порциями. Следовательно, для более полного усвоения извести двухкаль-циевым силикатом требуется выдерживать материалы некоторый период при температуре спекания (1300-1450°С). Чем продолжительнее будет эта выдержка, тем полнее произойдет связывание извести, а вместе с тем станут крупнее кристаллы 3CaO-Si02.
Однако долго выдерживать клинкер при температуре спекания или медленно охлаждать его не рекомендуется; портландцемент, в котором ЗСаО - Si02 имеет мелкокристаллическую структуру, обладает более высокой прочностью.
Продолжительность выдержки клинкера зависит от температуры: чем она выше в зоне спекания, тем быстрее образуется клинкер. Однако при чрезмерно высоком, а главное резком повышении температуры быстро образуется много расплава и обжигаемая смесь может начать комковаться. Образующиеся при этом крупные зерна труднее прогреваются и процесс перехода C2S в C3S нарушается. В результате клинкер будет плохо обожжен (в нем мало будет трехкальциевого силиката).
Чтобы ускорить процесс клинкерообразования, а также в тех случаях, когда нужно получить клинкер с высоким содержанием 3CaO-Si02, применяют некоторые вещества (фтористый кальций CaF2, окись железа и др.), обладающие способностью снижать температуру плавления сырьевой смеси. Более раннее образование жидкой фазы сдвигает процесс образования клинкера в область менее высоких температур.
В период спекания иногда вся известь смеси не успевает полностью усвоиться кремнеземом; процесс этого усвоения протекает все медленнее вследствие обеднения смеси известью и 2СаО Si02. В результате в клинкерах с высоким коэффициентом насыщения, для которых требуется максимальное усвоение извести в еиде ЗСаО Si02, всегда будет присутствовать свободная известь.
1-2% свободной извести не отражается на качестве портландцемента, но более ее высокое содержание вызывает неравномерность изменения объема портландцемента при твердении и поэтому недопустимо.
Клинкер из зоны спекания попадает в зону охлаждения (VI), где навстречу клинкеру движутся потоки холодного воздуха.
Из зоны охлаждения клинкер выходит с температурой 1000-1100° С и для окончательного охлаждения его направляют в холодильник печи.

ЭКСТРУЗИОННАЯ КЛИНКЕРНАЯ КЕРАМИЧЕСКАЯ ПЛИТКА (клинкер - ?).

В последнее время при продаже керамической плитки в Москве сложилась практика использования терминов клинкер, клинкерная плитка, экструзионная плитка и пр. как синонимов. Такое использование терминов оправдано только потому, что говорить «клинкер» проще, чем, например, «экструзионная керамическая клинкерная плитка». На самом деле - это смешение терминов и категорий.

Клинкерная керамическая плитка – это плитка, получаемая из сырых сланцевых глин (глина имеет специальный минералогического состав) путем прессования или экструзии с последующим длительным высокотемпературным обжигом. Иногда клинкер называют керамическим камнем. Клинкерная плитка «закаливается» в течение 40 часов (обычная плитка обжигается минимум 45 минут, max – 2 часа). Обжиг производится при температуре 13000С - 13900С (для сравнения – керамогранит, один из самых прочных видов керамической плитки, обжигают при температуре 11

Экструзионная клинкерная плитка производится с помощью специальной машины – экструдера (от лат. Extrudo - «выдавливаю», в быту – это мясорубка или кондитерский шприц) путем выдавливания пластичной сырой глины через формообразующее отверстие, сечение которого соответствует конфигурации готового изделия. Изделия могут быть самой сложной формы (отсюда – связь со ступенями, этот способ наиболее часто применяется для их производства). Технология изготовления клинкерных плиток путем прессования схожа со способом изготовления обычных плиток и вряд ли требует дополнительного разъяснения.

Обе технологии позволяют изготавливать отличный прочный материал, однако клинкерные плитки, полученные с помощью экструзии, по характеристикам превосходят любые «прессованные» плитки (в том числе, обычный керамогранит), что объясняет их постоянно растущую популярность.

Особенности экструзионного клинкера (преимущества и недостатки):

· высокая плотность материала и, как следствие – его морозостойкость , оправдывающая использование именно в нашей климатической зоне.

· Поверхность клинкерных экструзионных изделий обладает высокими антискользящими свойствами : такие плитки безопасны – на них трудно поскользнуться.

· Прочность (за счет прочности самого материала и за счет большой толщины готового изделия – до 2,5 см.) определяет преимущество укладки на пол по сравнению с керамогранитом в местах большой проходимости и с тяжелыми условиями эксплуатации. Например, в качестве ступеней - керамогранитные ступени, как правило, намного тоньше клинкерных. Толстые ступени из керамогранита, конечно, тоже производятся, только они слишком дороги, чтобы использоваться широко. Оборотная сторона этих качеств клинкера – толстый тяжелый материал потребует и бОльших расходов на его доставку до места использования.

· Разнообразие дизайнерских решений изделий из экструзионого клинкера (за счет новых технологий обработки поверхности клинкера) – на любой вкус. Хотите ступеньки под терракоту – вот Вам, хотите деревянные – пожалуйста, а можно и весёлый рисунок на подступёнок выложить:

https://pandia.ru/text/78/094/images/image002_102.jpg" width="213" height="102 src=">.jpg" align="left" width="166" height="93">посмотрите фото выше! А ступени из керамогранита зачастую менее надежны не только из-за маленькой толщины, но и из-за того, что они составные. Т. е. – склеены из двух элементов: обычной прямоугольной плитки и закругленной части, выглядящей как карниз. Конечно, выпускаются целиковые ступени и из керамогранита (пример такой ступени – на рисунке), но они намного дороже экструзионных клинкерных. И – обратите внимание: закругленная часть составной ступени изготовлена не из керамогранита, а из клинкера! Такие клинкерные закруглённые элементы, похожие на карниз, изготавливаются фабрикой Exagres, например, и имеются в продаже как отдельное изделие. В комплекте к торцевым элементам предлагаются металлические закладные пластины, которые позволяют, на наш взгляд, достигнуть более прочного цементно-клеевой основы, углового элемента и прямоугольной части ступени, чем в готовой составной ступени из керамогранита, где плитка и закругленная часть просто склеены.

· Еще одна особенность экструзионного клинкера – на оборотной стороне плитки имеется характерный профиль , называемый ласточкин хвост , что принципиально улучшает сцепление материала со связующим раствором и, в конечном итоге, с покрываемой поверхностью. У прессованной плитки такого профиля нет. Наличие ласточкина хвоста также позволяет создавать теплоизоляционные фасадные панели, облицованные экструзионным клинкером – клинкерные плитки заформованы с «изнанки» в пенополистирол , который в процессе полимеризации образует с плиткой очень прочное соединение. Пример термопанели из клинкерной плитки и фасада, отделанного панелями:

Отсюда – всё разнообразие областей применения экструзионной клинкерной плитки. Она широко используется для внутренних и наружных работ, как в жилых, так и индустриальных помещениях для отделки любых поверхностей. В загородном дом е экструзионный клинкер выкладывают на ступени, площадки на лестницах, в «замораживающихся» зимой помещениях (склады, гаражи, террасы), в индустриальных помещениях им отделывают стены и пол в производственных зонах (клинкер устойчив к воздействию химически активных веществ), выкладывают в местах повышенной проходимости (пол в магазине, ресторане, в цехе и пр.). Экструзионная клинкерная плитка широко используется для облицовки (и утепления) фасадов любых зданий. И не забудем упомянуть такую важную и специфическую область применения, как бассейны - со всем разнообразием специальных элементов, необходимых для обеспечения их правильного функционирования, и удобных в изготовлении из клинкера именно по экструзионной технологии.

Сегодня увеличение продаж именно клинкерной экструзионной керамики в Москве связано с пониманием самих покупателей преимуществ такой плитки даже по сравнению с керамогранитом.